Похідна функції, її диференціювання

Похідна як основне поняття диференціального числення, що характеризує швидкість зміни функції. Означення похідної та порядок її обчислення. Приклад знаходження похідної за визначенням. Похідні вищих порядків. Геометричний та фізичний зміст похідної.

Подобные документы

  • Методика викладання математики в 6 класі. Засвоєння властивостей функції у=х2 Шляхи формування у учнів вміння будувати графік даної функції та застосовувати властивості і графік функції до розв'язування задач. Знаходження точки перетину графіків функцій.

    конспект урока, добавлен 28.09.2018

  • Загальні відомості про алгебраїчні рівняння вищих порядків. Загальні відомості про алгебраїчні рівняння вищих порядків. Застосування теореми Безу та схеми Горнера при розв’язанні алгебраїчних рівнянь. Використання методу невизначених коефіцієнтів при вирі

    курсовая работа, добавлен 30.11.2015

  • Головна особливість узагальнення теореми Фалеса. Вивчення відношень між геометричними фігурами на прикладі найпростішого многокутника. Основна характеристика поняття подібності фігур. Формулювання математичною мовою означення подібних трикутників.

    конспект урока, добавлен 07.09.2018

  • Способи, за якими може бути задана функція: аналітичний, графічний, табличний, описовий та алгоритмічний. Визначення монотонних та строгомонотонних функцій. Ознаки функції від функції, або складної функції, або суперпозиції функцій та оберненої функції.

    лекция, добавлен 19.07.2017

  • Введення поняття цілої функції покращеного регулярного зростання, знаходження критерію регулярності в термінах розподілу нулів. Отримання асимптотичних оцінок для канонічних добутків, коефіцієнтів Фур’є цілих функцій, лічильних функцій послідовностей.

    автореферат, добавлен 26.08.2014

  • Множина дійсних та комплексних чисел. Збіжні послідовності у просторі. Неперервність функцій дійсних змінних. Вивчення основних теорем диференціального числення, формула Тейлора. Первісна і невизначений інтеграл. Елементи аналізу у метричних просторах.

    учебное пособие, добавлен 02.09.2014

  • Доведення однозначної розв’язності задач про визначення пари функцій. Пошук похідної дробового порядку. Обернені крайові задачі для дифузійно-хвильового рівняння з узагальненими функціями в правих частинах. Векторна функція скалярного аргументу.

    статья, добавлен 25.03.2016

  • Аналіз формулювання означення вписаного та центрального кутів. Знаходження кутової міри вписаного кута трикутника не користуючись транспортиром. Основна характеристика розвитку вмінь щодо використання геометричних понять під час розв’язування задач.

    конспект урока, добавлен 04.09.2018

  • Властивості функцій, поняття функціональної залежності. Області визначення та значення функції, заданої аналітично. Загальні властивості функцій, елементарні та складні функції. Визначення парної чи непарної функції. Графіки взаємно обернених функцій.

    контрольная работа, добавлен 13.11.2017

  • Обчислення значення функцій. Табулювання функцій та зображення їх графіків, зміна кольору, типу маркерів та типу ліній. Побудова поверхні обчислюваної функції для заданого діапазону. Діапазон зміни аргументу і обчислення суми у режимі відображення формул.

    контрольная работа, добавлен 28.07.2017

  • Характеристика визначеного інтеграла: означення та властивості; умови інтегрованості функції; формула Ньютона – Лейбніца; методи обчислення площ плоских фігур, довжини дуги плоскої кривої, об’єму і площі поверхні тіл обертання. Огляд невласних інтегралів.

    лекция, добавлен 30.04.2014

  • Інтегрування деяких тригонометричних функцій. Означення та властивості визначеного інтеграла. Деякі геометричні застосування визначеного інтеграла, його наближене обчислення. Відомості про комплексні числа та многочлени, їх властивості та дії з ними.

    курс лекций, добавлен 24.05.2015

  • Клас задач оптимізаційного геометричного проектування, до якого відносяться задачі розміщення, покриття, розбиття та прокладання оптимальних трас. Використання фрагментів кривих ліній. Обчислення кута взаємодії об’єктів. Рахунок параметру дискретизації.

    статья, добавлен 28.10.2016

  • Поняття метричного простору в математичному аналізі: множини обмежених числових послідовностей, їх збіжність. Принцип стиснутих відображень, поняття функції n змінних, простір "R" та основні теореми і зауваження до них. Повторні границі функцій.

    курс лекций, добавлен 14.06.2009

  • Основні поняття елементарної математики: алгебра, геометрія, тригонометрія. Елементи лінійної алгебри і аналітичної геометрії. Рішення систем лінійних однорідних рівнянь. Диференціальне числення функції однієї змінної. Поняття межі послідовності.

    курс лекций, добавлен 08.09.2011

  • Основна ідея та предмет вивчення реляційної алгебри, її структура, принципи та значення в системі наук. Зміст теоретико-множинних операцій. Загальна інтерпретація реляційних операцій. Кортежні змінні і правильно побудовані формули реляційного числення.

    реферат, добавлен 20.06.2010

  • Системи числення та функції алгебри логіки. Переведення чисел з однієї позиційної системи в іншу. Булеві функції та метод Квайна-Мак-Класски. Логічні елементи та їх класифікація. Приклади мінімізації функцій і синтезу комбінаційних схем різної складності.

    курсовая работа, добавлен 09.12.2014

  • Отримання необхідних і достатніх умов на похідні Гельфонда-Леонтьєва. Узагальнення теореми С. Шаха та М. Шеремети про цілі функції з однолистими. Уточнення та узагальнення раніше відомих результатів про радіуси однолистості послідовних похідних.

    автореферат, добавлен 26.09.2015

  • Виведення алгоритмів моделювання фізико-механічних полів, що містять допуски на геометричні та фізичні характеристики за допомогою врахування функції належності величин. Обчислення арифметичних операцій на основі теорії нечіткої логіки та R-функцій.

    автореферат, добавлен 05.01.2014

  • Особливість поняття та походження примітивно рекурсивної функції. Характеристика відомих арифметичних задач. Аналіз множення двох натуральних чисел. Зміст теореми обчислюваності по Тьюрінгу. Сутність обчислювального виразу Акермана та тези Черча.

    реферат, добавлен 01.06.2015

  • Методи комбінаторної теорії груп та теорії алгебри Лі, а також теорії многочленів над скінченними полями. Історія виникнення ідеї побудови кілець Лі, асоційованих з абстрактними групами. Основні означення та результати щодо комутаторного числення.

    автореферат, добавлен 11.10.2011

  • Методи наближеного обчислення інтнгралів. Формули прямокутників і трапеції. Параболічне інтерполювання. Дроблення проміжку. Залишковий член формули прямокутників. Залишковий член формули трапеції. Залишковий член формули Сімпсона, його обчислення.

    курсовая работа, добавлен 06.01.2009

  • Загальна характеристика використання методів математичного аналізу в медико-біологічній практиці. Розгляд функції та її похідних. Застосування диференціалу для наближених розрахунків. Основи інтегрального числення. Поняття про диференціальні рівняння.

    учебное пособие, добавлен 17.11.2015

  • Функції, їх властивості та області визначення. Поняття функціональної залежності. Три способи завдання функції: аналітичний, графічний і табличний. Загальні властивості функцій. Поділ алгебраїчних функцій на раціональні (цілі й дробові) та ірраціональні.

    учебное пособие, добавлен 19.11.2009

  • Обчислення заданої функції для проміжних значень аргументів за формулами Лагранжа. Виконання інтерполяції функції з використанням вбудованих сплайн-функцій пакета, що складається з кусків поліномів. Побудова графіків вихідної та інтерпольованої функцій.

    лабораторная работа, добавлен 22.07.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.