Линейная классификация объектов с использованием нормальных гиперплоскостей
Применение многослойных нейронных сетей для построения нелинейных классификаторов. Особенности использования геометрического подхода к распознаванию объектов. Возможности использования нормальных разделяющих гиперплоскостей на примере пары классов.
Подобные документы
- 26. Нейронные сети
Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.
реферат, добавлен 09.06.2016 Характеристика понятия образа, проблемы обучения распознаванию образов. Описание истории исследований в области нейронных сетей. Изучение сигнального метода обучения Хебба. Описание структурных схем и алгоритмов нейронных сетей Хопфилда и Хэмминга.
реферат, добавлен 12.06.2015Рассмотрение метода прогнозирования стоимости валют с использованием нейронных сетей, строящихся с использованием библиотеки Encog на языке программирования C#. Разработка программного продукта, описание его структуры. Обзор аналогичных приложений.
статья, добавлен 29.06.2018Разработка и внедрение модели кредитного скоринга с использованием нейронных сетей. Модель будет прогнозировать платежеспособность клиентов банка. Описание реализации. Предобработка входных данных. Процедура обучения нейронной сети, тестирование.
дипломная работа, добавлен 30.06.2017Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.
статья, добавлен 26.04.2017Моделирование поведения живых существ в процессе исследований в области искусственного интеллекта. Особенности искусственного нейрона и структура нейронных сетей. Осуществление диагностики с помощью использования пакета Statistica Neural Networks.
статья, добавлен 29.01.2016Топологическая модель быстрой нейронной сети. Применение гибридных быстрого дискретного вейвлет-преобразования для построения систем классификации сигналов. Структурный синтез быстрых нейронных сетей. Модели и концепции эволюционной кибернетики.
статья, добавлен 29.05.2017Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Применение механизмов внимания к задаче обнаружения текста с использованием нейронных сетей, их влияние на результат работы сети. Механизм внимания, позволяющий сканировать значения признаков, фокусируя модель на действительно важных свойствах объекта.
дипломная работа, добавлен 01.12.2019Преимущества применения нейронных сетей для распознавания объектов. Разработка алгоритма обработки образа с помощью нечеткой логики в системе технического зрения. Бинаризация и кодирование изображения при его преобразовании из цветного в оттенки серого.
курсовая работа, добавлен 29.03.2021Отнесение объектов к одному из заранее известных классов - одна из важнейших задач процесса классификации массивов информационных данных. Методика построения лингвистических шкал для признаков и классов. Алгоритм проверки классификатора на качество.
статья, добавлен 31.08.2020Основы и принципы построения, обучения, функционирования, области применения и характеристики наиболее распространенных специализированных искусственных нейронных сетей (нейронных парадигм), предназначенных для решения различных классов прикладных задач.
учебное пособие, добавлен 09.09.2012Класс как абстрактный тип данных, определяемый пользователем, модель реального объекта в виде данных и функций для работы с ними. Понятие спецификаторов. Особенности и возможности использования классов и объектов в объектно-ориентированной программе.
лабораторная работа, добавлен 10.08.2013Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.
статья, добавлен 02.04.2019Возможности современных информационных технологий и Интернета. Разработка клиент-серверной архитектуры построения больших искусственных нейронных сетей. Идентификация, аутентификация пользователей и защита информации в системе дистанционного обучения.
статья, добавлен 27.05.2018Анализ сложности построения инженерных теорий как в научном, так и практическом направлении на основе использования нетрадиционного подхода к задачам эффективного мониторинга данных. Анализ взаимосвязей элементов этих объектов на основе известных методов.
статья, добавлен 24.05.2020Применение искусственных нейронных сетей. Выработка алгоритма синтеза контроллера, формирующего порог, который обеспечит заданные выходные реакции объекта управления (устройства), с использованием математического аппарата искусственных нейронных сетей.
статья, добавлен 02.04.2019Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Анализ классической схемы математического моделирования. Методы распознавания объектов, сигналов, ситуаций, явлений и процессов. Характеристика задач распознавания образов и их типы. Использование искусственных нейронных сетей для распознавания образов.
реферат, добавлен 03.11.2016Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009Назначение диаграммы вариантов использования (диаграммы прецедентов). Понятие диаграммы классов. Отображение элементов моделей классов в элементах базы данных и приложений. Алгоритм построения диаграммы вариантов использования и диаграмм классов.
лабораторная работа, добавлен 02.11.2020Основные принципы построения и функционирования компьютерных сетей, их классификация и организация работы. Физическая среда и технологии передачи информации в локальных сетях. Характеристика глобальных сетей, их возможности, особенности и отличия.
реферат, добавлен 13.04.2014Классификация объектов технического обеспечения компьютерных сетей. Изучение современных сетевых адаптеров. Анализ использования серверов, модемов и факс-модемов. Описание алгоритма решения задачи с помощью табличного процессора Microsoft Excel 2002.
курсовая работа, добавлен 02.05.2019Особенности применения искусственных нейронных сетей для решения задачи классификации уровня формирования. Анализ решения задачи автоматической классификации уровня формирования по данным об идентифицированных объектах на электронной карте местности.
статья, добавлен 02.04.2019