Вычисление кратных интегралов методом Монте-Карло
История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
Подобные документы
Описаны примеры решений задач: Расставить пределы интегрирования двумя способами в двойном интеграле. Вычислить двойной, тройной интеграл. Найти площадь области, ограниченной кривыми и объем тела, ограниченного поверхностями. Вычисления по формуле Грина.
контрольная работа, добавлен 24.04.2014Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.
контрольная работа, добавлен 07.11.2018- 78. Задача Бюффона
Биография Жоржа Луи Бюффона как французского натуралиста, биолога, математика, естествоиспытателя и писателя, обзор его знаменитых трудов. Опыт Бюффона. Особенности доказательства формулы, лежащей в основе теоретического фундамента метода Монте-Карло.
реферат, добавлен 27.04.2022 Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.
курс лекций, добавлен 02.02.2012Для заданной выборки равномерного распределения построение ее вариационного ряда, эмпирической функции, гистограммы и полигона частот. Расчет выборочного среднего, дисперсии, моды и медианы. Оценка методом Монте-Карло интеграла с заданной ошибкой.
контрольная работа, добавлен 10.11.2017Порядок нахождения координат вектора в базисе. Способы решения системы линейных уравнений методом Гаусса, по правилу Крамера и через обратную матрицу. Определение пределов, производных, наибольшего и наименьшего значений функций. Вычисление интегралов.
контрольная работа, добавлен 01.05.2010Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.
презентация, добавлен 18.09.2013Построение графиков функции спроса и предложения, вычисление производных и приближенного значения числа через дифференциал функции. Определение экстремума, выгнутостей и вогнутостей функции. Вычисление интегралов и неоднородных линейных уравнений.
контрольная работа, добавлен 16.04.2010Определение длины ребер и угла меду ними при заданных координатах вершины пирамиды. Вычисление пределов, без использования правила Лопиталя. Вычисление производных заданных функций, а также порядок построения графика. Расчет неопределенных интегралов.
контрольная работа, добавлен 15.05.2014Понятие интеграла от функции двух, трех и большего числа переменных, основная методика их выражения в декартовых координатах. Двойные и тройные интегралы, их свойства и способы вычисления. Вычисление криволинейных интегралов с помощью формулы Грина.
лекция, добавлен 29.09.2014Определение первообразной функции. Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям. Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.
контрольная работа, добавлен 05.04.2021Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.
задача, добавлен 09.06.2014Пример нахождения неопределенного и определенного интегралов, использование основных формул. Вычисление несобственного интеграла, доказательство его расходимости. Приложения определенного интеграла. Изменение порядка интегрирования в двойном интеграле.
учебное пособие, добавлен 24.08.2012Особенность установления различных нетривиальных оценок функции концентрации. Изучение свойств сверсток разнообразных вероятностных распределений, которые появляются в многочисленных приложениях. Характеристика оценивания сложных многомерных интегралов.
статья, добавлен 12.05.2018Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.
контрольная работа, добавлен 29.01.2013Исследование и сравнительное описание наиболее распространенных приближенных методов вычисления определенных интегралов: прямоугольников, трапеций и парабол. Принципы замены подынтегральной функции многочленом, совпадающим с ней в некоторых точках.
контрольная работа, добавлен 07.06.2016Основы моделирования, классификации моделей. Анализ результатов натурных и вычислительных экспериментов. Классические и поисковые методы генерации и использования псевдослучайных чисел. Имитационное и статистическое моделирование, метод Монте-Карло.
дипломная работа, добавлен 13.10.2015Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.
реферат, добавлен 21.03.2023Вычисление неопределенных и определенных интегралов, предела функции по правилу Лопиталя. Составление уравнения касательной к кривой. Нахождение уравнения плоскости, проходящей через точки. Решение системы уравнений методами Гаусса и обратной матрицы.
контрольная работа, добавлен 25.04.2017Математическая модель и алгоритмическое описание процесса приближенного интегрирования. Применение составной квадратурной формулы трапеций для повышения эффективности вычислений при использовании подпрограммы. Тестирование стандартной подпрограммы.
статья, добавлен 26.01.2019Понятия поверхностных интегралов первого и второго рода, связь между ними, их геометрический и физический смысл, основные свойства и приложения. Задачи, связанные с функциями, определенными на поверхностях, вычисление массы материальной поверхности.
лекция, добавлен 29.09.2014Изучение особенностей гармонического анализа Фурье. Вычисление площадей фигур с помощью интегралов. Исследование понятия "синусоида" и ее практического применения. Графическая иллюстрация анализа Фурье. Применение вейвлетов в математических алгоритмах.
реферат, добавлен 26.03.2019Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).
курс лекций, добавлен 27.12.2015Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.
курсовая работа, добавлен 22.04.2011Выявление вида неопределенности и вычисление предела функций. Формулы производной степени и дроби функции, исчисление производной. Определение непрерывной числовой прямой и исследование функции, её критические точки. Вычисление неопределенных интегралов.
контрольная работа, добавлен 20.01.2013