Вычисление кратных интегралов методом Монте-Карло
История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
Подобные документы
- 101. Свойства интегралов
Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.
контрольная работа, добавлен 25.09.2017 Область використання і сучасний стан обчислювальних методів типу Монте-Карло, перспективи їх подальшого розвитку. Аналіз точності рандомізованих розрахунків у залежності від показника ортотропії, від моделі теплопровідності в ортотропному середовищі.
автореферат, добавлен 28.09.2015- 103. Высшая математика
Определение координат векторов, которые образуют базис четырехмерного пространства. Нахождение неопределенных интегралов и проверка их дифференцированием. Вычисление площади фигуры, ограниченной графиками функций; абсцессы точек пересечения графиков.
контрольная работа, добавлен 26.11.2012 Основные требования, предъявляемые к вычислительным алгоритмам. Системы линейных алгебраических уравнений. Устойчивость и точность прямых методов. Модификации концепции сопряженных градиентов. Анализ формулы Симпсона для вычисления двойных интегралов.
курс лекций, добавлен 16.05.2015Особенность интегрирования тригонометрических, иррациональных и дробно-рациональных функций. Характеристика вычисления различных видов интегралов. Главный анализ нахождения площади области, ограниченной кривыми, заданными в декартовых координатах.
методичка, добавлен 28.10.2015Область використання і сучасний стан обчислювальних методів типу Монте-Карло, перспективи їх подальшого розвитку. Ключові ідеї методу барицентричного усереднення. Аналіз та оцінка точності рандомізованих розрахунків у залежності від показника ортотропії.
автореферат, добавлен 26.02.2015Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.
контрольная работа, добавлен 09.04.2016Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Их вычисление с помощью повторного интегрирования. Цилиндрические координаты как соединение полярных в плоскости xy с обычной декартовой аппликатой z.
реферат, добавлен 12.11.2010Характеристика интегральных поверхностей первого и второго рода. Определение и вычисление поверхностного интеграла. Основной подсчет статических моментов плоскости относительно координатных плоскостей. Выражение через параметры подинтегральной функции.
статья, добавлен 12.06.2016- 110. Исследование функций
Нахождение производной функции, заданной явно, неявно или параметрически. Порядок исследования функции и построение ее графика. Методика вычисления интегралов. Частное решение дифференциального уравнения 1-го порядка. Изменение порядка интегрирования.
контрольная работа, добавлен 18.03.2012 Несобственный интеграл с бесконечными пределами интегрирования, его вычисление. Признаки сравнения несобственных интегралов от неограниченных функций. Следствие аксиомы о сходимости интеграла с большей подынтегральной функцией, исследование примеров.
презентация, добавлен 25.09.2017- 112. Гамма-функция
Бета и гамма-функция, представленные интегралами Эйлера первого и второго рода. Вычисления интегралов с помощью рассматриваемых функций. Выведение формулы Стирлинга, дающей в частности приближенное значение производной при больших ее значениях.
курсовая работа, добавлен 13.03.2010 - 113. Элементы теории поля
Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.
лекция, добавлен 18.10.2013 Застосування квадратурних формул з вагою до інтеграла з нескінченними межами і розривною функцією. Метод Канторовича для виділення особливостей. Наближене обчислення кратних інтегралів. Метод статистичних випробувань Монте-Карло, Люстерника і Діткіна.
курсовая работа, добавлен 22.01.2013Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 09.03.2015Способ доказательства существования и единственности решения краевой задачи для уравнения третьего порядка с кратными характеристиками методом интегралов энергии и методом эквивалентной редукции к интегральному уравнению Фредгольма второго рода.
статья, добавлен 30.09.2012Задачи вычисления неопределенного и определенного интегралов от функций одной переменной. Дифференциальные уравнения первого и высших порядков. Формирование умения использовать методы математики для решения профессиональных задач. Примеры решения задач.
учебное пособие, добавлен 19.11.2015Понятие и свойства неопределенного интеграла. Замена переменных. Интегрирование рациональных функций. Метод рационализации. Сущность метода интегрирования по частям. Таблица простейших неопределенных интегралов. Упрощение подынтегральной функции.
реферат, добавлен 17.01.2011Вычисление предела функции. Составление уравнения касательных, перпендикулярных прямой, проходящей через заданные точки, к графику функции. Нахождение неопределенного и определенного интегралов. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 21.09.2013Вычисление неопределенных и определенных интегралов, проверка результатов дифференцированием. Определение площади фигуры, ограниченной параболой и прямой. Дифференциальное исчисление функций нескольких переменных. Примеры решений системы уравнения.
контрольная работа, добавлен 16.04.2012- 121. Исследование функций
Решение математических задач. Нахождение пиков функции. Вычисление пределов, определенных и неопределенных интегралов; площади фигуры, ограниченной кривыми. Исследование функций дифференциальными методами. Уравнение касательной и нормали к кривой.
контрольная работа, добавлен 10.06.2014 - 122. Исследование функций
Методы исследования предела и производной функции, построения графиков. Вычисление неопределенных интегралов, методы интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных. Решение дифференциальных уравнений.
контрольная работа, добавлен 30.03.2015 Численный метод решения интегрального уравнения с ядром, имеющим особенности первого порядка по обеим переменным. Аппроксимация кусочно-линейными функциями. Расчет коэффициентов методом коллокации. Вычисление сингулярных интегралов от базисных функций.
статья, добавлен 13.05.2017Решение прикладных задач в области геометрии, механики и физики с использованием определённого интеграла. Вычисление площади криволинейной трапеции. Определение объёма тела, полученного вращением плоской фигуры вокруг оси. Нахождение длины дуги кривой.
контрольная работа, добавлен 09.05.2021Анализ способа вычисления двойных интегралов путем сведения их к повторному интегралу. Ограничение функции сверху и снизу двумя непрерывными кривыми в области d. Алгоритм исчисления двойного интеграла в прямоугольных координатах и замена его переменных.
презентация, добавлен 17.09.2013