Вычисление кратных интегралов методом Монте-Карло
История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
Подобные документы
Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.
курсовая работа, добавлен 31.10.2017Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.
курсовая работа, добавлен 28.04.2012Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015Преимущества, характеристика и специфика метода Монте-Карло, его применение в нанотехнологиях и в вычислении интегралов. Способ усреднения подынтегральной функции, оценка погрешности метода Монте-Карло и решение интегральных уравнений второго рода.
курсовая работа, добавлен 02.05.2015Информационный осмотр методов решения кратных интегралов. Понятие о кубатурных формулах. Метод ячеек и последовательное интегрирование. Метод Симпсона для кратных интегралов, его реализация. Программа вычисления интегралов с помощью кубатурной формулы.
курсовая работа, добавлен 23.04.2011Метод Монте-Карло, вычисления интегралов, решения систем алгебраических уравнений высокого порядка, исследования различного рода сложных систем. Обычный алгоритм Монте-Карло интегрирования, моделирование поведения элементарных частей физической системы.
доклад, добавлен 25.11.2010Численные методы и их использование для вычисления кратных интегралов. Метод ячеек как один из простейших способов вычисления интеграла. Оценка погрешности метода ячеек. Текст и блок-схема программы. Выполнение программы в математическом пакете.
контрольная работа, добавлен 30.10.2010Понятие о кубатурных формулах. Метод ячеек для вычисления кратных интегралов. Последовательное интегрирование, кубатурная формула типа Симпсона. Принципы построения программ с автоматическим выбором шага. Блок-схема и листинг программы, результаты.
курсовая работа, добавлен 30.10.2010Методы численного интегрирования: формулы прямоугольников, трапеций, Симпсона и Эйлера. Интегрирование кратных интегралов. Метод ячеек. Повторное применение квадратурных формул. Листинг программы нахождения значений интеграла от функции одной переменной.
курсовая работа, добавлен 15.03.2013Вычисление значения определенных интегралов численно методами прямоугольников, трапеций, Симпсона, квадратур Гаусса-Лежандра, Монте-Карло. Изучение методов интегрирования и написание программы для нахождения значения интеграла разными методами.
практическая работа, добавлен 02.06.2017Терминология и свойства тройных интегралов, вычисление с помощью массы неоднородного тела, а также декартовых, цилиндрических и сферических координат. Применение тройных интегралов для расчета координат центра тяжести, инерции и кинетической энергии тела.
реферат, добавлен 10.11.2010Исследование машинных систем методом имитационного моделирования (метод Монте-Карло), простые и экономные способы формирования последовательности случайных чисел. Характеристика области применения метода Монте-Карло, его достоинства и недостатки.
реферат, добавлен 18.03.2014Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.
курсовая работа, добавлен 27.11.2018Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.
курсовая работа, добавлен 06.03.2010Разработка методов анализа данных, предназначенных для решения конкретных прикладных задач. Изучение влияния на свойства статистических процедур анализа данных тех или иных отклонений от исходных предположений. Примеры применения метода Монте-Карло.
статья, добавлен 22.05.2017Объём цилиндрического тела. Примеры вычисления двойных интегралов. Приложения двойных интегралов к задачам механики. Вычисление площадей и объёмов с помощью двойных интегралов. Вычисление площадей поверхностей с помощью двойного интегрирования.
реферат, добавлен 12.03.2010Рассмотрение методов вычисления определенных интегралов, подынтегральных функций которых не являются элементарными. Характеристика метода прямоугольников. Исследование метода трапеций и парабол. Оценка точности вычисления "неберущихся" интегралов.
реферат, добавлен 05.05.2016Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
реферат, добавлен 11.12.2016Характеристика численных методов в математических расчетах. Описания методов для решения различных задач с помощью случайных последовательностей. Обзор техники моделирования случайной последовательности чисел. Практическое применение метода Монте-Карло.
доклад, добавлен 21.03.2015Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.
контрольная работа, добавлен 10.01.2012Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.
лекция, добавлен 10.04.2016Представление бета и гамма функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов. Бета и гамма функции. Производная гамма функции. Вычисление интегралов формула Стирлинга, примеры вычислений.
курсовая работа, добавлен 30.10.2010Статистическое моделирование как научное направление, области его применения. Методы Монте-Карло: анализ общей схемы, достоинства, недостатки и примеры применения. Случайные числа, генераторы случайных и псевдослучайных чисел. Метод Hit-Or-Miss.
лекция, добавлен 18.07.2013Использование метода прямоугольников, метода трапеций и метода парабол для вычисления определенных интегралов. Расчет и сравнение абсолютной и относительной ошибок приближенных методов. Формулы для вычисления относительной и абсолютной погрешностей.
методичка, добавлен 27.08.2017Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.
курсовая работа, добавлен 13.11.2011