Евклидовы и псевдоевклидовы пространства
Понятие системы координат в геометрии. Анализ примеров положительного и неположительного скалярного произведения векторов четырехмерного пространства. Псевдоевклидово пространство, особенности его движения. Кривые в псевдоевклидовом пространстве.
Подобные документы
Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.
методичка, добавлен 14.12.2010- 52. Пространство Rn
Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.
курсовая работа, добавлен 17.01.2011 Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.
презентация, добавлен 26.01.2014Анализ пространства как трехмерного континуума. Возможность четырехмерной трактовки "мира". Оценка пространства Минковского как четырёхмерного псевдоевклидового пространства сигнатуры, предложенного в геометрической интерпретации пространства-времени.
реферат, добавлен 15.05.2016Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.
лекция, добавлен 08.11.2015Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.
курс лекций, добавлен 20.09.2011Линейные операции над векторами. Действия над математическими величинами, заданными своими координатами. Свойства скалярного и смешанного произведения векторов. Определение векторного произведения одноименных и разноименных ортов. Признак компланарности.
курс лекций, добавлен 10.11.2013Геометрия Лобачевского ("воображаемая" геометрия). Создание модели геометрии Лобачевского из материалов геометрии Евклида, а также установление непротиворечивости и законности новой геометрической системы, разные геометрии и разные пространства.
реферат, добавлен 18.02.2010Плоская алгебраическая кривая и радиус-вектор прямой на некоей постоянной величине. Уравнения декартовых координат, трисекция угла с помощью конхоиды. Циклоидальные кривые, их разновидности и Архимедова спираль, однородная и нерастяжимая тяжелая нить.
реферат, добавлен 23.02.2012Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.
книга, добавлен 28.12.2013Характеристика кривой линии как множества точек пространства, координаты которых являются функциями одной переменной. Определение длины отрезка кривой. Изучение особенностей алгебраических, трансцендентных кривых. Анализ особенностей плоских кривых линий.
реферат, добавлен 22.12.2015Определение коллинеарности векторов. Вычисление координат точки пересечения медиан и высот треугольника. Составление уравнения прямой, проходящей через его вершину параллельно стороне. Расчет площади основания пирамиды, используя произведения векторов.
контрольная работа, добавлен 17.11.2017Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.
курс лекций, добавлен 02.05.2014Функция Юнга и ее свойства. Пространство Орлича и норма Амемии. Полнота пространства Орлича. Критерии сходимости и фундаментальности последовательности функций. Привлечение нетривиальных сведений из выпуклого анализа. Теория нормированных пространств.
статья, добавлен 26.04.2019Структурные элементы ячейки 2D пространства. Вероятные структурные состояния с учетом кристаллической и фрактальной компонент. Основные классы вероятных фрактал содержащих структур ячеистого 2D пространства. Элементарные ячейки модулярных структур.
статья, добавлен 21.06.2018Понятие гильбертовых пространств аналитических функций. Доказательство теоремы о том, что открытый или единичный круг, квадратично интегрируемых аналитических функций в области D является гильбертовым пространством. Определение пространства Харди.
реферат, добавлен 06.11.2017Скалярное произведение векторов: определение. Характеристика векторного произведения векторов, его свойства (антиперестановочность множителей, распределительности относительно сложения и пр.). Определение смешанного произведения векторов, примеры задач.
лекция, добавлен 09.07.2015- 68. Линейная алгебра
Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.
учебное пособие, добавлен 13.02.2016 Построение уравнений прямой с направляющим и нормальным вектором. Условия перпендикулярности вектора. Построение уравнения прямой с угловым коэффициентом. Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.
презентация, добавлен 06.09.2017Геометрическая интерпретация векторного произведения в зеркальном отражении. Главная особенность доказательств коммутативности сложения векторов на плоскости. Основные свойства скалярного отображения. Характеристика аксиомы параллельности Евклида.
контрольная работа, добавлен 28.04.2016Неравенства Гельдера и Минковского. Декартово произведение метрических пространств. Пространства непрерывных и непрерывно дифференцируемых функций. Принцип сжимающих отображений. Линейные нормированные пространства. Полнота метрических пространств.
учебное пособие, добавлен 08.12.2013Определение аффинных преобразований пространства, их основные свойства. Основные доказательства теорем про аффинные преобразования. Характеристика родства пространства: его определение, свойства (корректность определения направления родства и пр.).
реферат, добавлен 23.11.2016Параллельность прямых, прямой и плоскости, взаимное расположение прямых в пространстве. Перпендикулярность прямой и плоскости. Понятие вектора в пространстве, сложение и вычитание векторов. Координаты точки и координаты вектора. Определение объема тел.
учебное пособие, добавлен 24.02.2014Основные виды стереометрических задач. Расчет угла между прямой и плоскостью. Рассмотрение особенностей теоремы Пифагора. Система координат на плоскости. Сущность понятия ортогональность векторов. Порядок поиска расстояний между прямыми в геометрии.
презентация, добавлен 02.03.2014Изучение структуры пространств модулярных форм, содержащих мультипликативные эта-произведения с единичным характером. Нахождение размерности и базиса пространств модулярных форм по формуле Коэна-Остерле, поведение функций в параболических вершинах.
статья, добавлен 31.05.2013