Евклидовы и псевдоевклидовы пространства

Понятие системы координат в геометрии. Анализ примеров положительного и неположительного скалярного произведения векторов четырехмерного пространства. Псевдоевклидово пространство, особенности его движения. Кривые в псевдоевклидовом пространстве.

Подобные документы

  • Понятие евклидова пространства. Коллинеарные векторы. Размерность и базис векторного пространства. Операции над матрицами. Линейное преобразование переменных. Теорема о делении с остатком. Понятие квадратичной формы, исчисление ее канонического базиса.

    дипломная работа, добавлен 17.01.2011

  • Сущность задачи на нахождение геометрического места точек пространства. Серединная плоскость скрещивающихся прямых. Гиперболический параболоид как поверхность второго порядка. Окружность и сфера Аполлония. Метод в стереометрических задачах на построение.

    реферат, добавлен 24.12.2013

  • Понятие и общая характеристика, свойства и особенности матриц, определителей, систем линейных алгебраических уравнений и методы решения. Линейное пространство и преобразования в нем. Основы аналитической геометрии. Функции и предел их последовательности.

    учебное пособие, добавлен 13.03.2011

  • Составление определителя из координат векторов и его вычисление. Решение системы уравнений методом Крамера. Определение длины ребра пирамиды по формуле расстояния между двумя точками. Нахождение координат точки, симметричной относительно прямой.

    контрольная работа, добавлен 11.03.2014

  • Понятие и свойства вектора как математической абстракции объекта. Исследование декартовой системы координат в пространстве. Расчет плоскостей. Виды параметрических уравнений прямой. Связь полярных координат с декартовыми. Гиперболический параболоид.

    лекция, добавлен 22.11.2015

  • Определение понятия единичного и нулевого вектора. Рассмотрение коллинеарных векторов. Ознакомление с процессом геометрической проекции вектора на ось. Изучение декартовых прямоугольных координат вектора в пространстве. Анализ формул деления отрезка.

    лекция, добавлен 07.07.2015

  • Геометрическая интерпретация комплексных чисел и действий над ними. Формулы длины отрезка и скалярного произведения векторов. Параллельность, коллинеарность, перпендикулярность. Двойное отношение четырёх точек плоскости. Полюсы относительно окружности.

    учебное пособие, добавлен 28.12.2013

  • Развитие геометрических представлений на Востоке и в Греции. Создание Евклидом труда "Начала", сохранявшего руководящую роль в течение свыше двух тысяч лет. Разработка Декартом аналитической геометрии и метода координат. Открытие неевклидовой геометрии.

    реферат, добавлен 13.12.2020

  • Анализ аксиом о взаимном расположении точек, прямых и плоскостей в пространстве. Характеристика прямоугольной системы координат в промежутке. Свойства аффинных и метрических преобразований в стереометрии. Суть векторного решения стереометрических задач.

    курсовая работа, добавлен 18.10.2015

  • Характеристика особенностей построения Декартовой прямоугольной системы координат (на плоскости, в пространстве). Графическое решение систем алгебраических линейных уравнений и задач линейного программирования с помощью Декартовой прямоугольной системы.

    курсовая работа, добавлен 31.01.2015

  • Понятие дифференцируемости на замкнутой области. Анализ пространства Соболева в теоретических и прикладных вопросах математической физики и функционального анализа. Обзор теоремы о пополнении интеграла Лебега. Множество метрического пространства.

    реферат, добавлен 02.07.2013

  • Основные понятия теории поля. Фиксированная система координат в пространстве. Рассмотрение основных характеристик и классификации скалярного и векторного полей. Формулы Стокса и Остроградского-Гаусса. Векторный дифференциальный оператор Гамильтона.

    лекция, добавлен 29.09.2014

  • Исторические замечания о геометрических преобразованиях на плоскости и в пространстве. Анализ примерной программы по геометрии. Параллельный перенос и поворот, осевая и центральная симметрии. Движения и равенство фигур. Симметрия относительно плоскости.

    презентация, добавлен 28.03.2018

  • Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.

    учебное пособие, добавлен 25.11.2012

  • Основные способы построения геометрической системы: метод координат, аксиоматический подход и определение геометрии по группе преобразований. Проективная плоскость и ее основная (проективная) геометрия. Характеристика Аффинной и Евклидовой геометрии.

    реферат, добавлен 25.09.2011

  • Сущность векторной и скалярной величины. Линейные операции над векторами. Декартовы прямоугольные координаты в пространстве. Координаты векторов. Деление отрезка в заданном отношении. Направляющие косинусы. Кривые второго порядка. Уравнение фигуры.

    курсовая работа, добавлен 17.01.2011

  • Понятия предела функции, замыкания множества и компактности в метрическом пространстве. Теория фильтров при изучении сходимости в топологических пространствах. Рефлексивное и транзитивное отношение предпорядка. Симметричный и антисимметричный предпорядок.

    контрольная работа, добавлен 11.12.2012

  • Разработка метода построения некоторых геометрических образов в гиперкомплексном квадриплексном пространстве. Формулирование геометрической интерпретации квадриплексного пространства с помощью изоморфизма квадриплексных и бикомплексных пространств.

    статья, добавлен 29.01.2019

  • Определители матриц. Миноры и алгебраические дополнения. Решение линейных уравнений. Метод Гаусса. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Расстояние от точки до плоскости. Поверхности вращения.

    шпаргалка, добавлен 25.03.2011

  • Понятие направления. Свойства операции сложения векторов. Умножение вектора на число. Линейная зависимость векторов. Координаты вектора. Скалярное произведение векторов. Векторное произведение двух векторов. Смешанное произведение трех векторов.

    методичка, добавлен 17.05.2012

  • Условия ортогональности линейного преобразования. Независимость ортонормированной системы векторов. Стандартное евклидово пространство и ортогональные матрицы. Геометрический смысл собственного преобразования А. Доказательства леммы. Индукция векторов.

    лекция, добавлен 30.04.2014

  • Описание метода координат и способов его применения на примере конкретных математических задач. Выделение умений, необходимых для успешного овладения методом координат и подбор задач, формирующих данные умения. Этапы решения задач методом координат.

    дипломная работа, добавлен 09.02.2023

  • Определения двумерной нечеткой проективной геометрии. Определение параметров и функции принадлежности двумерной нечеткой точки. Применение нечеткой проективной геометрии и статистической обработки результатов опытов при учете неравноточности измерений.

    статья, добавлен 03.02.2017

  • Получение точных неравенств типа Джексона на классах дифференцируемых функций двух переменных. Исследование оператора обобщенного сдвига в метрике пространства L2,p(R2) с весом Чебышева-Эрмита. Ортонормированная система алгебраических полиномов Эрмита.

    статья, добавлен 30.10.2016

  • Функция как математическое понятие, отражающее однозначную парную связь элементов одного множества с элементами из другого множества. Топология пространства арифметических векторов. Компактные множество и линейные отображения. Теорема Кантора и Бореля.

    методичка, добавлен 07.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.