Векторы. Основные понятия

Понятие и основные свойства векторов как направленных отрезков, их типы и параметры, принципы измерения. Содержание и подходы к проведению линейных операций над векторами, используемые при этом правила. Проектирование на ось и составляющие процесса.

Подобные документы

  • Основные понятия надежности. Классификация отказов. Составляющие надежности. Количественные показатели безотказности: общие понятия. Основные сведения из теории вероятностей. Плотность распределения отказов. Математические модели теории надежности.

    курс лекций, добавлен 23.07.2015

  • Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.

    шпаргалка, добавлен 18.03.2013

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Цифровой дифференциальный анализатор для генерации векторов. Комплексное изучение общих требований к изображению отрезка. Симметричный алгоритм ЦДА. Предварительное вычисление количества узлов. Вычисление приращения координат, генерация отрезков.

    презентация, добавлен 05.11.2014

  • Пространство элементарных исходов. События в дискретном пространстве. Сумма (объединение), произведение (пересечение), разность событий. Основные свойства операций над событиями. Вероятность в классическом пространстве. Понятие счётного множества.

    презентация, добавлен 22.09.2017

  • Сущность и общее представление тригонометрической функции. Понятие и общая характеристика показательной функции, ее основные свойства и признаки, особенности графического изображения и подходы к анализу. Разработка и принципы разрешения уравнений.

    разработка урока, добавлен 05.12.2014

  • Понятие линейной комбинации векторов. Выражение члена с номером через остальные слагаемые. Свойства линейнозависимой системы векторов. Геометрический смысл линейной зависимости, коллинеарности и компланарности. Выражение переменной через другие значения.

    презентация, добавлен 21.09.2013

  • Изложение понятия и физического смысла скалярного и векторного произведения векторов в системе координат. Изучение и доказательства их свойств. Приведение некоторых метрических формул. Вычисление площади параллелограмма, построенного на векторах.

    лекция, добавлен 26.01.2014

  • Рассмотрение особенностей проведения линейных операций над различными векторами с одинаковыми координатами. Ознакомление с условиями коллинеарности в координатной форме. Проекция вектора на ось в алгебре. Вычисления прямоугольной системы координат.

    презентация, добавлен 01.09.2015

  • Понятие многогранников в геометрии. Основное определение понятия пирамиды. Определение вершины, ребер, боковых граней пирамиды, ее основания и правила их нахождения. Основные свойства правильной пирамиды, апофемы, усеченной пирамиды и тетраэдра.

    презентация, добавлен 26.04.2011

  • Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.

    реферат, добавлен 06.03.2010

  • Линейные операции над векторами. Действия над математическими величинами, заданными своими координатами. Свойства скалярного и смешанного произведения векторов. Определение векторного произведения одноименных и разноименных ортов. Признак компланарности.

    курс лекций, добавлен 10.11.2013

  • Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.

    учебное пособие, добавлен 15.10.2016

  • Понятие матрицы. Основные операции над матрицами. Понятие определителя матрицы. Вычисление определителей матрицы. Способ вычисления определителя n-го порядка. Основные свойства определителей. Методика решения систем линейных уравнений методом Крамера.

    реферат, добавлен 20.02.2012

  • Сущность и структура линейных уравнений, их разновидности и свойства. Критерий совместности системы линейных уравнений, исследование теоремы Кронекера-Капелли. Метод Гаусса: содержание и назначение, сферы применения. Свойство свободных переменных.

    лекция, добавлен 26.03.2012

  • Понятия и свойства системы линейных алгебраических уравнений. Разложение определителя по элементам некоторого ряда. Правило Крамера. Метод Гаусса (последовательного исключения неизвестных). Обратная матрица и ее применение для решения линейных систем.

    курсовая работа, добавлен 31.12.2018

  • Анализ свойств операции в конечномерном векторном пространстве, определяющейся как скаляр произведений перемножаемых векторов, не зависящих от системы координат. Ознакомление с метрическими формулами проекций векторов на оси. Декартовые координаты.

    лекция, добавлен 29.09.2013

  • Понятие, виды и формулы расчета обратной, присоединенной и нулевой матриц, определение суммы и произведения, доказательство свойства умножения ее на число, свойства линейных операций. Определители для двух неравных квадратных матриц одинакового размера.

    лекция, добавлен 26.01.2014

  • Теоретические аспекты понятия "случайное событие" и характеристика вспомогательных терминов. Вероятность происхождения события: ее свойства и частота, правила математических действий с нею, основные принципы использования вероятностных расчетов.

    реферат, добавлен 19.07.2010

  • Принципы сложения и умножения. Общее понятие о подмножествам. Принцип включения и исключения. Размещения с повторениями, сочетания. Треугольник Паскаля. Бином Ньютона и полиноминальная формула (комбинаторный смысл). Главные свойства перестановок.

    презентация, добавлен 27.09.2017

  • Основные операции над матрицами: сложение, вычитание, умножение, а также умножение матрицы на число. Понятие определителя, его свойства и вычисление. Однородная система n линейных уравнений с n неизвестными. Решение системы уравнений методом Гаусса.

    реферат, добавлен 07.04.2011

  • Создание чувственной основы, формирование представлений о размерах предметов. Свойства скалярных и векторных величин. Логика процесса измерения. Ознакомление дошкольников с идеей измерения посредством промежуточных мер и принципом измерения величин.

    реферат, добавлен 28.10.2014

  • Основное содержание и подходы к решению задачи Коши. Принципы формирования численных методов, их типы: явные и неявные, одно- и многошаговые. Основные глобальные и локальные ошибки, возникающие при их применении. Выбор шага метода и его обоснование.

    отчет по практике, добавлен 18.02.2019

  • Сущность и основные методы решения системы линейных алгебраических уравнений. Понятие линейной зависимости, ее представление. Характеристика метода исключения Гаусса и полного исключения Жордана. Основные правила определения элементов обратной матрицы.

    лекция, добавлен 29.10.2013

  • Особенность векторного произведения коллинеарных векторов. Характеристика создания градиентов в координатах. Анализ результата раскрытия определителя. Геометрические и алгебраические свойства смешанного творения. Суть циклической перестановки множителей.

    реферат, добавлен 23.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.