Векторы. Основные понятия

Понятие и основные свойства векторов как направленных отрезков, их типы и параметры, принципы измерения. Содержание и подходы к проведению линейных операций над векторами, используемые при этом правила. Проектирование на ось и составляющие процесса.

Подобные документы

  • Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.

    курс лекций, добавлен 05.01.2016

  • Рассмотрено понятие логистики, её принципы, сущность, область применения, виды логистических потоков, проведение операций, виды систем и их свойства. Уделено особое внимание объекту, предмету, задаче, цели логистики, и концепции основных положений.

    презентация, добавлен 29.04.2014

  • Особенность проведения линейных операций над матрицами. Линейно-зависимые и линейно-независимые ряды моделей. Характеристика вычисления вектор-столбцов. Исследование алгебраических дополнений и миноров. Основные свойства определителя n-го порядка.

    лекция, добавлен 17.05.2017

  • Симплекс, его грани, ребра и вершины. Свойства векторов, задаваемых ребрами прямоугольного симплекса в двухмерном, трехмерном и четырехмерном евклидовом пространстве. Понятие n-мерного евклидового пространства. Решение пространственных задач по теме.

    курсовая работа, добавлен 22.04.2011

  • Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.

    презентация, добавлен 21.09.2013

  • Общее понятие и виды сводки. Основные задачи и методы построения статистической сводки. Типы задач, решаемых методом группировок. Группировочный признак и правила образования групп. Основные правила составления и оформления статистических таблиц.

    курсовая работа, добавлен 09.06.2015

  • Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.

    учебное пособие, добавлен 13.02.2016

  • Основные комбинаторные формулы. Решение задач комбинаторики средствами MS Excel. Использование встроенных функций MS Excel для вычисления перестановок, сочетаний, размещений. Основные понятия и правила комбинаторики. Свойства биномиальных коэффициентов.

    методичка, добавлен 17.02.2014

  • Меры измерения углов: градусная, радианная. Понятие тангенса, косинуса, синуса, арктангенса и котангенса, их геометрический смысл. Графики тригонометрических и обратных тригонометрических функций. Основные тригонометрические тождества и следствия из них.

    лекция, добавлен 18.04.2012

  • Скалярное произведение векторов как число, равное сумме произведений соответствующих компонент этих векторов. Скалярное произведение товаров как их общая стоимость. Свойства скалярного произведения. Условие ортогональности. Неравенство Коши-Буняковского.

    презентация, добавлен 21.09.2013

  • Действия с комплексными числами. Системы линейных уравнений с тремя неизвестными. Решение линейных неравенств, содержащих знак модуля. Показательная функция, ее свойства, график. Показательные уравнения и неравенства. Логарифмическая функция, ее свойства.

    методичка, добавлен 02.04.2015

  • Классификация и основные типы линейных интегральных уравнений. Решение уравнения Вольтерра и Фредгольма. Свойства характеристических чисел и собственных функций самосопряженного интегрального уравнения. Билинейное разложение для самосопряженных ядер.

    курс лекций, добавлен 08.11.2012

  • Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.

    методичка, добавлен 14.12.2010

  • Основные понятия правильной фигуры, их свойства, периметр, а также площадь геометрической фигуры. Основные виды правильных фигур (шестиугольник, треугольник, квадрат, пятиугольник), понятие их равенства и свойств. Задачи для урока по математике.

    лекция, добавлен 14.08.2014

  • Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.

    презентация, добавлен 19.09.2017

  • Особенность выполнения различных операций с матрицами. Исследование скалярного и векторного произведения векторов. Применение матричных функций для решения задач линейной алгебры в MathCAD. Анализ однородных и неоднородных систем линейных уравнений.

    презентация, добавлен 08.04.2018

  • Понятие линейного уравнения, его типы и формы. Сущность и математическое обоснование определителей второго порядка. Порядок и правила решения систем двух линейных уравнений с двумя переменными с помощью определителей. Использование закона Крамера.

    конспект урока, добавлен 07.04.2014

  • Сущность понятия "логарифм", основное тождество. Свойства и параметры логарифмов. Понятие "решение уравнения". Пример решения уравнения, содержащего параметры в логарифмируемом выражении. Особенности решения уравнения, содержащего параметры в основании.

    презентация, добавлен 15.04.2012

  • Основные понятия матрицы: элементы, линейные матричные операции. Условие совместности системы линейных уравнений. Метод последовательного исключения переменных Гаусса — применение и модификации, достоинства, устойчивость. Неоптимальность метода Крамера.

    презентация, добавлен 11.12.2013

  • Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.

    учебное пособие, добавлен 17.04.2013

  • Нахождение внутреннего угла треугольника с точностью до градуса, длины высоты, опущенной из вершины, точки пересечения высот и координат векторов. Уравнение медианы, проведенной через вершину. Система линейных неравенств, определяющих треугольник.

    контрольная работа, добавлен 13.06.2016

  • Основные типы, элементы и свойства параллелепипеда. Объём и соотношения между длинами сторон в наклонном параллелепипеде и углами между ними. Основные формулы площади боковой и полной поверхности. Параллельность и равенство противолежащих граней.

    реферат, добавлен 29.01.2017

  • Виды матриц. Их сложение и умножение на число. Формула произведения согласованных матриц. Свойства линейных операций. Транспонирование математических таблиц. Характеристика определителей и их вычисление. Понятие минора и алгебраического дополнения.

    презентация, добавлен 29.08.2015

  • Методы решения уравнений в частных производных, а также анализ полученных результатов, используемые основные понятия и методы. Параметры разностных схем, их структура и назначение. Вариационный принцип Лагранжа и Гамильтона, их сравнительное описание.

    контрольная работа, добавлен 31.10.2014

  • Основные формулы, используемые в методе Крамера и методе обратной матрицы при решении системы линейных алгебраических уравнений. Решение СЛАУ с помощью MS Excel. Ввод матрицы коэффициентов и вектора свободных коэффициентов. Определение обратной матрицы.

    лабораторная работа, добавлен 11.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.