Векторы. Основные понятия
Понятие и основные свойства векторов как направленных отрезков, их типы и параметры, принципы измерения. Содержание и подходы к проведению линейных операций над векторами, используемые при этом правила. Проектирование на ось и составляющие процесса.
Подобные документы
Топологическое пространство как основной объект изучения топологии, его содержание и основные категории измерения. Этапы становления и развития топологии как научного направления. Влияние аксиом отделимости на свойства топологических пространств.
реферат, добавлен 24.12.2010Диофант и история диофантовых уравнений. Сравнения первой степени с одним неизвестным и методы их решения. Методы решения линейных сравнений. Нахождение решений для некоторых частных случаев линейного диофантового уравнения, основные понятия и свойства.
дипломная работа, добавлен 27.10.2013Аксиоматика и основные понятия стереометрии и ее роль в развитии пространственных представлений. Параллельность двух плоскостей: определение, признак, свойства, теорема. Перпендикулярность прямой и плоскости: определение, основные признаки и свойства.
реферат, добавлен 25.11.2012Понятие и равенство векторов. Законы сложения векторов. Произведение вектора на число. Применение векторов к решению задач. Средняя линия трапеции. Уравнение линии на плоскости. Теорема о площади треугольника. Вычисление площади многоугольника.
курс лекций, добавлен 08.10.2017Рассматривается задача решения разреженных положительно определенных систем линейных алгебраических уравнений с медленно меняющимися коэффициентами. Приведены условия локальной и глобальной сходимости алгоритма. Обсуждаются его основные свойства.
статья, добавлен 26.04.2019Коэффициенты квадратичной формы, неоднородная система линейных уравнений методом Гаусса. Собственные значения и собственные векторы линейных операторов. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду, вид этой формы.
курсовая работа, добавлен 15.03.2011- 82. Численные методы
Определение устойчивости линейных алгебраических уравнений. Содержание методов Гаусса и LU-разложения. Правила вычислений с помощью квадратного корня и трехдиагональной матрицы. Понятие интеграла и аппроксимации функций. Основы решения задачи Коши.
методичка, добавлен 15.11.2014 Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.
лекция, добавлен 12.03.2013История возникновения науки арифметики, ее процесс развития. Открытие несоизмеримых отрезков греческими математиками из школы Пифагора. Проблематика определения понятия функции. Процесс изучения тригонометрических и логарифмических функций в школе.
курсовая работа, добавлен 29.10.2013Понятие определителей, действия над матрицами. Система линейных алгебраических уравнений. Векторы и нелинейные операции. Аналитическая геометрия: простейшие задачи на плоскости. Приложения производной: правило Лопиталя, монотонность функции, экстремумы.
методичка, добавлен 15.11.2014Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.
контрольная работа, добавлен 22.08.2014Понятие таблиц чисел, так называемых матриц, с помощью которых удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи. Определение линейного преобразования.
контрольная работа, добавлен 14.04.2011Параллельность и перпендикулярность прямых и плоскостей. Свойства многогранников, их основные виды. Нахождение площади призмы, параллелепипеда, пирамиды, трапеции и ромба, их высоты и сторон, боковых ребер и граней. Векторы в пространстве, их сложение.
учебное пособие, добавлен 01.04.2013Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.
курс лекций, добавлен 22.11.2015Основные подходы к определению вероятности события и формулы комбинаторики. Дискретное распределение вероятности и понятие математического ожидания. Дисперсия и стандартное отклонение. Биноминальный закон распределения. Непрерывные случайные величины.
учебное пособие, добавлен 25.01.2012- 92. Численный метод решения систем линейных алгебраических уравнений на основе метрического алгоритма
Реализация нового численного метода решения систем линейных алгебраических уравнений, основанного на целенаправленном хаотическом поиске, стохастических вычислениях и использовании облачных технологий. Особенность генерирования векторов на итерации.
статья, добавлен 12.01.2018 Суть основного правила комбинаторики. Анализ булевой алгебры характеристических векторов и высказываний. Особенность дизъюнктивных и конъюнктивных нормальных форм. Функционально-полные системы функций. Главные параметры поиска многочлена Жегалкина.
курс лекций, добавлен 08.02.2015Исследование базиса и составление таблицы умножения для заданных векторов. Особенности и условия применения векторов в процессе доказательства алгебраических неравенств. Вычисление скалярного произведения заданных векторов, условия перпендикулярности.
реферат, добавлен 18.06.2015Исследование действия законов Ома и Кирхгофа для электрических цепей. Рассмотрение расчетов линейных электрических цепей в установившемся режиме символическим методом. Определение частотных и временных характеристик линейных электрических цепей.
контрольная работа, добавлен 10.04.2018Скалярное произведение векторов и его использование в решении пространственных задач. Применение основных векторных соотношений к решению стереометрических задач. Основные векторные и координатные формулы, связанные со скалярным произведением векторов.
курсовая работа, добавлен 26.02.2013Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.
презентация, добавлен 18.12.2017Основные виды графических изображений, используемые при анализе результатов исследования. Применение картограмм в практической деятельности врача. Отображение динамики явлений на линейных и столбиковых диаграммах. Группы ошибок статистического анализа.
лекция, добавлен 07.05.2014Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.
курсовая работа, добавлен 06.07.2014Сущность векторной и скалярной величины. Линейные операции над векторами. Декартовы прямоугольные координаты в пространстве. Координаты векторов. Деление отрезка в заданном отношении. Направляющие косинусы. Кривые второго порядка. Уравнение фигуры.
курсовая работа, добавлен 17.01.2011