Нейронные сети, генетические алгоритмы и нечеткие системы
Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.
Подобные документы
Понятие нечеткого алгоритма как инструмента для приближенного анализа сложных систем. Методы построения функции принадлежности выходного нечеткого множества. Дефаззификация как переход от полученного нечеткого множества к единственному значению.
лекция, добавлен 28.08.2013- 27. Нейронные сети
Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.
реферат, добавлен 29.12.2011 Особенности применения инновационных инструментов прогнозирования. В качестве основного метода, используемого для прогнозирования, применяются искусственные нейронные сети Хопфилда, представляющие собой нейронные сети на основе радиально-базисных функций.
статья, добавлен 15.12.2021Описание применения генетического алгоритма для решения комбинаторных задач или оптимизации различного рода функций. Моделирование эволюции естественного процесса и его применение для решения задач оптимизации как первостепенная задача направления.
статья, добавлен 15.08.2020Разработка модели, которая описывает алгоритм оптимизации размещения инструментов по поверхностям в случае с двумя параметрами. Модернизированный до двух критериев алгоритм оптимизации на основе методов: генетические алгоритмы, метод ветвей и границ.
статья, добавлен 08.05.2018Основные алгоритмы интеллектуальных систем, их характеристики и условия применимости для задач оптимизации. Меметический алгоритм оптимизации, его этапы и компоненты. Описание культурного алгоритма, основанного на эволюционном программировании.
реферат, добавлен 12.12.2012Суть схемы формирования психофизического состояния оператора АРМ. Разработка автоматизированной системы, использующей для диагностики состояния оператора АРМ особенностей динамической биометрии. Нейронные сети для обработки данных клавиатурного почерка.
статья, добавлен 22.08.2020Искусственные нейронные сети, основы описания многомерных тестовых данных. Построение области допустимых изменений параметров однородных групп, модели регрессии. Определение компонент дискретного конечного множества элементов. Нейронная сеть Хопфильда.
учебное пособие, добавлен 15.01.2018Понятие алгоритма - точного предписания (набора инструкций) о выполнении в определенной последовательности (порядке) некоторой системы операций для решения всех задач некоторого заданного типа. Алгоритмы линейной, циклической и разветвленной структуры.
презентация, добавлен 05.03.2012Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Искусственные нейронные сети. Весовые коэффициенты синапсов. Организация ассоциативной памяти. Полносвязная нейронная сеть с симметричной матрицей связей. Схема сети Хопфилда. Классификация по критерию максимального правдоподобия с помощью сети Хэмминга.
реферат, добавлен 10.03.2011Рекурсивные функции и реализация алгоритмов, методы решения данных соотношений. Анализ трудоемкости механизма вызова процедуры и вычисления факториала, логарифмические тождества. Рекурсивные алгоритмы и основная теорема о рекуррентных соотношениях.
реферат, добавлен 12.07.2010- 38. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Решение задач оптимизации и структурного синтеза. Поиск путей повышения эффективности генетических алгоритмов. Экспериментальная оценка эффективности методов с фрагментарными кроссовером и макромутациями. Решение NP-трудных задач дискретной оптимизации.
статья, добавлен 19.01.2018- 41. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009Классификация структур данных. Алгоритмы поиска и сортировки массивов и файлов. Работа с последовательностями. Динамические структуры данных – виды списков и деревья поиска. Методы машинного представления графов, алгоритмы обхода, поиска кратчайших путей.
учебное пособие, добавлен 02.04.2012Обеспечение работы ИИС (Интеллектуальная информационная система). Автоматизированные системы распознавания образов. Генетические алгоритмы и моделирование биологической эволюции. Методы автоматической классификации примеров ситуаций реальной практики.
реферат, добавлен 16.03.2011- 45. Нейронные сети
Модель нелокального нейрона, являющаяся обобщением классической модели Дж. Маккалоки и У. Питтса. Когнитивная аналитическая система "Эйдос". Искусственные нейронные сети, проблемы и перспективы. Моделирование иерархических структур обработки информации.
научная работа, добавлен 26.08.2010 Понятие генетических алгоритмов как аналитических технологий, созданных и выверенных самой природой за миллионы лет ее существования. Особенности разработки системы, генерирующей решение с помощью генетических алгоритмов, характеристика их источника.
курсовая работа, добавлен 21.10.2013Описание системы автономной печати для 3D-принтера и алгоритмы самотестирования ее компонентов. Настройка подключения к 3D-принтеру, тестирование сервоприводов и температурных датчиков. Работа с файлами на съемном носителе. Вывод списка файлов на дисплей.
статья, добавлен 16.03.2019Сетевые устройства - терминалы, которые соединяют в едином информационном пространстве гаджеты, используемые в повседневной деятельности. Расширенное машинное обучение, глубокие нейронные сети - основа создания автономных интеллектуальных систем.
контрольная работа, добавлен 15.03.2019Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.
курсовая работа, добавлен 21.02.2016Рассмотрение проблемы создания органических компьютеров, построенных из живых нейронов, с помощью которых сегодня появляется возможность спроектировать новые поколения вычислительных устройств. Нейронные сети как способ решения сложнейших задач.
статья, добавлен 26.04.2019