Современные аспекты разработки алгоритмов для решений разрешающих уравнений

Задачи, приводящие к решению разрешающих уравнений, их применение. Решение разрешающих уравнений: метод определителей, обратной матрицы, градиента, разложения в ряд Тейлора, формулы приближенного дифференцирования. Аспекты разработки алгоритмов.

Подобные документы

  • Прямая и обратная задачи решения системы линейных алгебраических уравнений. Использование результата для синтеза линейных систем при известных воздействиях на них и их реакциях на эти воздействия. Алгоритмы решения многокритериальной задачи оптимизации.

    статья, добавлен 14.07.2016

  • Решение систем линейных уравнений методом Гаусса, Крамера и обратной матрицы. Геометрия на плоскости и в пространстве, каноническое уравнение прямой. Раскрытие неопределенностей и вычисление пределов. Производные и дифференцирования сложной функции.

    контрольная работа, добавлен 22.01.2013

  • Матрицы и действия над ними. Вычисление определителя и транспонирование матрицы. Технология выполнения операций в среде Excel. Вычисление обратной матрицы с помощью функции МОБР. Решение систем линейных уравнений методом Жордана-Гаусса. Свойства вектора.

    методичка, добавлен 25.06.2013

  • Понятие линейного уравнения, его типы и формы. Сущность и математическое обоснование определителей второго порядка. Порядок и правила решения систем двух линейных уравнений с двумя переменными с помощью определителей. Использование закона Крамера.

    конспект урока, добавлен 07.04.2014

  • Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.

    реферат, добавлен 27.10.2019

  • Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.

    методичка, добавлен 29.12.2015

  • Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.

    доклад, добавлен 29.04.2021

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

  • Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.

    лекция, добавлен 06.04.2014

  • Нахождение определителя матрицы. Решение систем матричным способом. Решение алгебраических дополнений. Решение системы уравнений методом Гаусса. Исследование совместности систем по теореме Кронекера-Капелли, определение их ранга, нахождение решения.

    контрольная работа, добавлен 20.12.2016

  • Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.

    лекция, добавлен 29.09.2014

  • Аналитические методы решения уравнений математической физики в частных производных. Численные методы решения уравнений матфизики. Дискретизация расчетной области, формирование матрицы неизвестных температур системы линейных уравнений, построение изотерм.

    курсовая работа, добавлен 01.04.2022

  • Построение регуляризирующих операторов для решения интегральных уравнений и систем уравнений Фредгольма первого рода. Доказательство теорем единственности и получение оценки устойчивости для таких уравнений в разных семействах множеств корректностей.

    автореферат, добавлен 23.11.2017

  • Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.

    дипломная работа, добавлен 21.01.2011

  • Нахождение корней трансцендентных и нелинейных уравнений комбинированным методом, методами хорд и касательных. Формулы для уточнения корня уравнения. Построение графика функции, графиков первой и второй производной. Графический метод отделения корней.

    лабораторная работа, добавлен 07.12.2012

  • Изучение теоремы о верхнем и нижнем разложении матрицы, имеющей ненулевую диагональ. Ознакомление с расчетными формулами, используемыми для построения матриц. Очерк математических выражений по методу Гаусса и алгоритмы для ряда системных уравнений.

    презентация, добавлен 30.10.2013

  • Решение задач с параметрами – одна из сложных тем курса алгебры средней школы. Настоящая статья посвящена исследованию квадратных уравнений и сводящихся к ним систем уравнений, содержащих параметр, на некоторой области допустимых значений переменной.

    статья, добавлен 13.07.2021

  • Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.

    курсовая работа, добавлен 11.06.2014

  • Анализ формы уравнений Максвелла и потенциалов для полей. Исследование волновых уравнений и уравнений Гельмгольца для векторов и потенциалов. Определение и оценка энергетических соотношений в электромагнитном поле. Принцип перестановочной двойственности.

    лекция, добавлен 27.09.2017

  • Место, теоретическая основа, связи линейных, квадратных, кубических, логарифмических, показательных, тригонометрических уравнений в курсе математики средней школы. Практическое выявление самых распространенных в математике уравнений и способов их решения.

    научная работа, добавлен 08.11.2015

  • Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.

    лекция, добавлен 12.03.2013

  • Упорядоченные множества элементов. Структура представления многомерных матриц. Преобразование старшинства индексов. Метод гиперплоскостей для построения выпуклой области множества неупорядоченных элементов. Метод сингулярного разложения матрицы.

    контрольная работа, добавлен 15.01.2018

  • Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.

    курс лекций, добавлен 11.10.2014

  • Матрица и её основные свойства, ранг, определитель и способы его поиска, обратная матрица. Решение системы линейных уравнений по формулам Крамера. Использование матрицы в решении системы уравнений и определении длины вектора, поиск базисных решений.

    контрольная работа, добавлен 27.11.2015

  • Сингулярные интегральные уравнения: решение уравнений ограниченных на обоих концах методом подобластей. Характеристика программы Matchematica. Реализация метода подобластей в программе: метод Гаусса, решение системы линейных алгебраических уравнений.

    курсовая работа, добавлен 12.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.