Современные аспекты разработки алгоритмов для решений разрешающих уравнений
Задачи, приводящие к решению разрешающих уравнений, их применение. Решение разрешающих уравнений: метод определителей, обратной матрицы, градиента, разложения в ряд Тейлора, формулы приближенного дифференцирования. Аспекты разработки алгоритмов.
Подобные документы
Система, имеющая более чем одно решение (неопределенная). Метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида. Применение метода Крамера.
презентация, добавлен 23.08.2016Методика решения интегральных уравнений типа свертки, их классификация. Краевые задачи типа Карлемана для полосы, задача Карлемана с дробно рациональным коэффициентом и с интегральным условием. Особенности сингулярных интегральных уравнений и их решение.
дипломная работа, добавлен 06.07.2014Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.
реферат, добавлен 06.03.2023Теоретические аспекты понятия о комплексных числах, число действительных корней и основные правила их извлечения. Методы решения различных видов уравнений с несколькими переменными в радикалах и приближенное решение уравнений в элементарной алгебре.
презентация, добавлен 11.03.2012Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.
методичка, добавлен 03.03.2012Понятие алгебраического уравнения четвертой степени, история его решения. Пример решения биквадратного и возвратного уравнений четвертой степени. Решение Декарта—Эйлера. Анализ схемы метода Феррари, разложения на множители и кубическая резольвента.
доклад, добавлен 04.10.2013Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.
курсовая работа, добавлен 19.01.2016Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012Решение системы алгебраических уравнений матричным способом и методом Гаусса. Определение собственных чисел и собственных векторов матрицы. Возведение комплексного числа в степень. Определение наибольшего и наименьшего значений функции на отрезке.
контрольная работа, добавлен 26.12.2021Особенности отображения и разделения заданного уравнения на элементарные подуравнения. Анализ построения асимптот. Основные аспекты решения уравнений третьей степени. Формула вычисления комплексных корней. Основы проверки правильности записи момента.
дипломная работа, добавлен 26.03.2015Рассмотрение численных методов решения уравнений переноса и реализация одного из методов решения на языке программирования С/C++ и в пакете MS Excel. Рассмотрение и решение задачи Коши для уравнений переноса. Линейное одномерное уравнение переноса.
курсовая работа, добавлен 03.10.2017Систематизация знаний о системах линейных уравнений. Метод Гаусса как наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Метод удобнее применять на расширенной матрице. Пример решения уравнений.
презентация, добавлен 17.05.2023Пифагоровы тройки, их количество. Идентификация простых и составных чисел. Разрешимость Диофантовых уравнений с переменными под идентификацию простого и составного числа. Формулы вертикальных рядов. Составление уравнений из тождественных составляющих.
статья, добавлен 27.03.2016- 114. Вычисление матриц
Вычисление определителя четвертого порядка, способов разложения его по элементам. Характеристика основных свойств определителей. Исследование системы линейных алгебраических уравнений (основных понятий и определений). Методы применения формулы Крамера.
презентация, добавлен 29.08.2015 Тригонометрические функции числового аргумента. Метод замены переменной, разложения на множители, решения однородных тригонометрических уравнений. Отбор корней. Метод подстановки, введения новой переменной, алгебраического сложения и вычитания уравнений.
курсовая работа, добавлен 10.05.2020Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014- 117. Метод Гаусса-Жордана
Нахождение обратной матрицы. Исследование системы линейных алгебраических уравнений на совместность. Нахождение координат вектора в заданном базисе. Метод элементарных преобразований и окаймляющих миноров. Способы нахождения ранга расширенной матрицы.
контрольная работа, добавлен 17.04.2017 История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.
учебное пособие, добавлен 30.09.2014Разработка методики получения приближенных аналитических решений исходных дифференциальных уравнений пограничных слоев, позволяющей получать решения практически с заданной степенью точности. Условия использования уравнений Прандтля и Польгаузена.
статья, добавлен 31.08.2018История развития квадратных уравнений. Эволюция подходов к решению Древнего Вавилона, Диофанта, Индии, ал-Хорезми, Европы в 13-17 веках. Краткая характеристика теоремы Виета. Особенности применения различных способов решения квадратных уравнений.
научная работа, добавлен 16.09.2016Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.
контрольная работа, добавлен 25.08.2015- 122. Метод Гаусса
Рассмотрение системы уравнений как условия, состоящего в одновременном выполнении нескольких уравнений относительно нескольких переменных. Установление обусловленности матрицы. Изучение методов интегрирования Ньютона-Котеса. Обзор метода прямоугольников.
доклад, добавлен 24.01.2016 Пример решения задачи линейного программирования с ограничениями-равенствами. Решение матрицы системы линейных уравнений. Вариант задачи линейного программирования в общем случае (при произвольном числе свободных переменных), применение симплекс-метода.
контрольная работа, добавлен 25.10.2009Рассмотрение начальной задачи для систем уравнений и использование развитой методики дополнительного аргумента для решения задачи. Применение развитой методики для доказательства существования решения новых видов векторно-матричных нелинейных уравнений.
статья, добавлен 07.08.2020Решение задачи о нелинейном колебании эллиптического маятника методом частичной дискретизации нелинейных уравнений. Сравнительный анализ полученных результатов с решением задачи соответствующего малым колебаниям, описывающейся системой линейных уравнений.
статья, добавлен 21.06.2018