Полиномиальная аппроксимация
Определение полиномиальной аппроксимации для линейной, гиперболической и параболической регрессий. Применение функции невязки для решения задачи регрессионного анализа методом наименьших квадратов. Компьютерная реализация полиномиальной аппроксимации.
Подобные документы
Оценка коэффициента линейной регрессии по методу наименьших квадратов. Модель кейнсианского типа. Определение эмпирических коэффициентов регрессии и корреляции в случае линейной модели регрессии. Решение системы нормальных уравнений по формулам Крамера.
контрольная работа, добавлен 19.10.2013Расчет уравнения парной линейной регрессии зависимости прибыли от производительности труда. Особенность вычисления обобщающего коэффициента эластичности. Калькуляция средней ошибки аппроксимации. Характеристика показателей корреляции и детерминации.
контрольная работа, добавлен 14.06.2015Анализ использования линейной, логарифмической, полиномиальной, экспоненциальной и степенной функций для прогнозирования текущих расходов. Особенность среднеквадратического отклонения тренда. Расчет коэффициента устойчивости уровня ряда динамики.
статья, добавлен 08.11.2016Характеристика зависимостей между среднедневной заработной платой и расходами на покупку продовольственных товаров. Расчет параметров линейной регрессии. Оценка модели через ошибку аппроксимации. Определение индекса корреляции по данным регионов.
контрольная работа, добавлен 17.04.2011Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.
курсовая работа, добавлен 17.04.2010Определение коэффициентов линейного уравнения регрессии. Определение числа индивидуальных значений признака. Корреляционная зависимость и уравнение регрессии. Построение системы нормальных уравнений с использованием метода наименьших квадратов.
реферат, добавлен 24.12.2011- 32. Определение зависимости объема выпуска продукции от объема капиталовложений средствами эконометрики
Построение классической линейной регрессионной модели. Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации, средней относительной ошибки аппроксимации. Условия Гаусса-Маркова. Распределение случайного члена.
контрольная работа, добавлен 10.01.2013 Общие понятия эконометрических моделей и задачи экономического анализа, решаемые на их основе. Применение регрессионного анализа в экономике. Определение параметров модели парной линейной регрессии. Модели стационарных и нестационарных временных рядов.
курс лекций, добавлен 14.10.2017Основные задачи регрессионного анализа. Использование обобщенного метода наименьших квадратов. Характеристика оценки коэффициентов автокорреляции, дисперсии и ковариации. Особенность тенденции роста рассеяния случайных отклонений и построения матрицы.
презентация, добавлен 18.01.2015Парная линейная регрессия. Вычисление неизвестных параметров с помощью метода наименьших квадратов. Коэффициенты корреляции, эластичности и аппроксимации. Создание нелинейной регрессии степенного и показательного вида. Уравнение равносторонней гиперболы.
контрольная работа, добавлен 27.06.2012Адекватность математической модели и методы её построения, описывающие взаимосвязи между двумя случайными величинами с помощью регрессионных уравнений. Применение методов линейного программирования для моделирования и решения производственных задач.
практическая работа, добавлен 21.05.2017Вычисление коэффициента корреляции между заработной платой и прожиточным минимумом. Построение доверительных полос для уравнения регрессии. Дисперсионный анализ и определение параметров линейной регрессионной модели методом наименьших квадратов.
контрольная работа, добавлен 21.12.2013Разработка численно-аналитических схем решения линейных задач оптимального управления со смешанными ограничениями. Исследование способов повышения эффективности численных приближенных решений. Анализ сходимости дискретной аппроксимации исходной задачи.
автореферат, добавлен 31.07.2018Нахождение метода наименьших квадратов уравнения линейной регрессии, где признак: среднесписочное число работников магазина и сумма розничного товарооборота. Определение параметров зависимости. Применение коэффициента корреляции, его вычисление.
контрольная работа, добавлен 24.11.2014Экономическая интерпретация коэффициента регрессии. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Коэффициенты детерминации и средние относительные ошибки аппроксимации. Прогнозирование среднего значения показателя.
контрольная работа, добавлен 30.11.2013Способы оценки качества каждой модели через среднюю ошибку аппроксимации и F-критерий Фишера. Анализ параметров линейного, степенного, гиперболического трендов, описывающих динамику доли малых предприятий. Этапы расчета параметров линейной регрессии.
контрольная работа, добавлен 03.05.2014Аппроксимация, интерполяция и экстраполяция как наиболее распространенные методы поиска функциональных зависимостей. Методы и подходы к интерполяции данных. Метод наименьших квадратов как математический метод, применяемый для решения различных задач.
контрольная работа, добавлен 30.11.2016Повышение точности аппроксимации экспериментальных данных при обучении нечеткой нейронной сети. Анализ методов решения задачи выделения значений лингвистической переменной (задача нечеткого гранулирования информации). Алгоритм нечеткой кластеризации.
автореферат, добавлен 28.03.2018Формулировка транспортной задачи и ее математическая модель. Сущность метода наименьших затрат. Особенности применения методов линейного программирования для решения экстремальных задач в экономике. Решение транспортной задачи методом наименьших затрат.
курсовая работа, добавлен 22.06.2012Сущность и цели экономического анализа, взаимосвязи переменных и поведение различных показателей. Модель парной линейной регрессии. Метод наименьших квадратов, система нормальных уравнений. Примеры реализации линейной регрессии в Microsoft Excel.
учебное пособие, добавлен 06.10.2012Анализ зависимости объема потребления домохозяйства от располагаемого дохода. Построение регрессионной модели. Оценка качества уравнения регрессии. Расчет коэффициента эластичности, ошибок аппроксимации и регрессии, значения коэффициента детерминации.
контрольная работа, добавлен 07.03.2016Построение линейной модели, параметры которой можно оценить методом наименьших квадратов. Выбор показателя корреляции. Составление таблицы дисперсионного анализа для расчета значения критерия Фишера. Расчет частных и парных коэффициентов эластичности.
контрольная работа, добавлен 15.12.2012Расчет параметров уравнения линейной регрессии, отображающего уменьшение заработной платы и выплат социального характера при увеличении прожиточного минимума. Вычисление показателей корреляции и детерминации. Определение средней ошибки аппроксимации.
контрольная работа, добавлен 31.07.2013Математическая постановка задачи регрессии. Определение зависимости величины (числового значения) определенного свойства случайного процесса или физического явления от другого переменного свойства или параметра. Анализ классов нелинейных регрессий.
контрольная работа, добавлен 22.06.2015Основные задачи и предпосылки применения корреляционно-регрессионного анализа. Методы определения направления связи, ее характера. Парная регрессия на основе метода наименьших квадратов и метода группировок. Принятие решений на основе уравнения регрессии.
контрольная работа, добавлен 16.04.2016