Полиномиальная аппроксимация
Определение полиномиальной аппроксимации для линейной, гиперболической и параболической регрессий. Применение функции невязки для решения задачи регрессионного анализа методом наименьших квадратов. Компьютерная реализация полиномиальной аппроксимации.
Подобные документы
Построение линейного уравнения парной регрессии на основе данных о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны и о среднедневной заработной плате. Расчет коэффициента парной корреляции и средней ошибки аппроксимации.
контрольная работа, добавлен 21.02.2011Матричная запись множественной линейной модели регрессионного анализа. Решение задач регрессивного анализа. Пример решения нахождения модели множественной регрессии. Проверка статистической значимости коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 29.01.2012Главная особенность изменения уровней рядов динамики. Основная характеристика изучения развития социально-экономических процессов во времени. Определение параметров модели методом наименьших квадратов. Расчет коэффициента корреляции и детерминации.
контрольная работа, добавлен 13.10.2017Адаптивная мультипликативная модель Хольта-Уинтерса и сезонность. Точность модели с использованием средней относительной ошибки аппроксимации. Случайность остаточной компоненты, интервал сглаживания и скользящая средняя. Дисконт и процентная ставка.
контрольная работа, добавлен 23.12.2012Методики классификации моделей демографических систем и процессов на основе эндогенных и экзогенных связей. Параметрические аппроксимации процессов рождаемости и смертности. Влияние демографических характеристик на параметры экономического роста.
дипломная работа, добавлен 11.08.2010- 106. Основы эконометрики
Построение доверительного интервала для коэффициента регрессии модели. Оценка качества модели, ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности спроса на товар в зависимости от его цены, коэффициент эластичности.
контрольная работа, добавлен 31.03.2015 Метод наименьших квадратов при оценке параметров линейной модели. Показатели разброса случайной величины, коэффициент детерминации, функция эластичности, гетероскедастичность и автокоррелированность ошибок в Гауссовском распределении и статистике Фишера.
контрольная работа, добавлен 28.07.2011Определение средней выручки продавцов. Расчет коэффициента корреляции. Построение графиков корреляционных зависимостей. Оценка адекватности регрессионных моделей. Расчет системы уравнений для теоретической линии регрессии методом наименьших квадратов.
контрольная работа, добавлен 16.04.2016Изучение аппроксимации низких поверхностей. Оценка предельных расхождений итогов расчета объемов методами усреднения высот, триангуляции и объемной палетки. Суть прохождения раздела по оврагу. Анализ степени выпуклости с помощью безразмерного критерия.
статья, добавлен 22.11.2015Разработка эконометрической модели в пакете Econometric Views. Расчет модели множественной регессии для всей совокупности независимых факторов методом наименьших квадратов. Определение коэффициентов эластичности и детерминации. Анализ характера остатков.
курсовая работа, добавлен 04.12.2013Расчет прогнозного значения среднегодовой численности промышленно-производственного персонала с помощью моделей кривых роста. Определение коэффициентов линейной и параболической моделей. Рассмотрение и проверка гипотезы об отсутствии автокорреляции.
курсовая работа, добавлен 01.08.2017Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.
задача, добавлен 20.06.2016Идентификация парной линейной регрессионной зависимости между ВВП и капиталом. Идентификация линейных трендовых моделей ВВП, капитала и числа занятых, прогноз по этим моделям. Эконометрическая модель с использованием метода наименьших квадратов.
контрольная работа, добавлен 01.11.2012Основы прогнозирования и валютного рынка. Современное состояние валютного фонда России, его проблемы и тенденции. Прогнозирование доли доллара в общем объеме золотовалютных резервов методом экстраполяции временного ряда и методом наименьших квадратов.
курсовая работа, добавлен 20.06.2014Классификация и основные этапы эконометрического моделирования. Спецификация и структура модели, её применение в управлении. Основные понятия корреляционно-регрессионного анализа. Главные особенности парного и линейно-парного регрессионного анализа.
курсовая работа, добавлен 30.03.2012Линейный коэффициент парной корреляции и средняя ошибка аппроксимации. Оценка статистической значимости параметров регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента. Скорректированный коэффициент множественной детерминации.
контрольная работа, добавлен 16.03.2015Оценка точности модели с использованием средней относительной ошибки аппроксимации. Расчет прогнозных значений экономического показателя. Зависимость между компонентами тренд – сезонный временный ряд. Расчет процентов с точным числом дней ссуды.
контрольная работа, добавлен 03.12.2013Порядок построения адаптивной мультипликативной модели Хольта-Уинтерса с учетом сезонного фактора. Оценка точности построенной модели с использованием средней ошибки аппроксимации. Нормальность распределения остаточной компоненты по R/S-критерию.
контрольная работа, добавлен 18.07.2016Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.
курс лекций, добавлен 10.02.2014Методы расчета параметров выборочного уравнения линейной регрессии с помощью метода наименьших квадратов. Оценка статистической значимости коэффициента корреляции, используя критерий Стьюдента. Анализ тесноты связи с помощью показателя детерминации.
учебное пособие, добавлен 13.01.2016Уравнение парной регрессии, её параметры: коэффициенты корреляции и эластичности, их значимость и доверительный интервал, ошибка аппроксимации, коэффициент детерминации. Матрица парных коэффициентов корреляции. Анализ параметров уравнения регрессии.
контрольная работа, добавлен 07.07.2015Обзор статистической зависимости с помощью методов корреляционного и регрессионного анализа. Изучение линейной и нелинейной регрессии. Прогнозирование временных рядов при построении эконометрической модели данных. Функции сложного процента денег.
курсовая работа, добавлен 07.09.2013Решение графическим методом типовой задачи оптимизации. Исследование динамики экономического показателя на основе анализа одномерного временного ряда. Наличие аномальных наблюдений. Оценка адекватности модели. Оптимальное значение целевой функции.
контрольная работа, добавлен 12.05.2013Основная цель создания сообщества добавленной стоимости. Проведение расчета коэффициентов регрессии методом наименьших квадратов. Определение зависимости стоимости бренда от количества функциональных единиц. Основные характеристики регрессионной модели.
статья, добавлен 25.03.2018Моделирование как метод научного познания. Процесс построения математической модели симплекс-методом для решения экономической задачи. Симплекс-метод как универсальный метод для решения линейной системы уравнений или неравенств и линейного функционала.
курсовая работа, добавлен 05.04.2012