Комплексные числа в планиметрии

Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательству некоторых основных планиметрических теорем (отрезок; параллельность и перпендикулярность; углы и площади; треугольники; прямые и окружности).

Подобные документы

  • История комплексных У. Гамильтона, названные "кватернионами". Свойства этих чисел, и их примеры: операция сопряжения, тождество для двух квадратов, деление. Определение кватернионов и их сопряжение. Гиперкомплексные числа: коммутативные, ассоциативные.

    курсовая работа, добавлен 22.04.2011

  • Краткая биографическая справка из жизни Н.И. Лобачевского. История появления геометрии. Модель Пуанкаре, Клейна и интерпретация Бельтрами. Практическое применение геометрии Лобачевского: теорема Пифагора, площадь треугольника и круга, длина окружности.

    контрольная работа, добавлен 15.04.2013

  • Предназначение начертательной геометрии, характеристика центральных и параллельных проекций. Описание способов задания плоскости на эпюре. Определение расстояния от точки до плоскости. Взаимное пересечение тел, ограниченных поверхностями вращения.

    учебное пособие, добавлен 07.11.2015

  • Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.

    курсовая работа, добавлен 12.11.2018

  • Представление плоскости уравнением. Уравнение плоскости "в отрезках". Расстояние от точки до плоскости. Канонические и параметрические уравнения прямой. Расстояние между точками. Деление отрезка в данном отношении. Уравнение поверхности (гиперболоида).

    реферат, добавлен 27.01.2016

  • Определение положения квадратичной функции с помощью разных теорем. Формулирование и доказательство прямой и обратной теорем Виета. Рассмотрение применения данных теорем к задачам с параметрами, сводящихся к исследованию корней квадратного трехчлена.

    курсовая работа, добавлен 25.05.2018

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Найпростіші застосування комплексних чисел. Спосіб Гамільтона введення комплексних чисел. Застосування комплексних чисел в геометрії. Формули Ейлера і Муавра та їх застосування. Комплексні числа в геометричних побудовах. Комплексні числа і центр мас.

    реферат, добавлен 10.01.2009

  • Особенности и способы построения перспективных проекций на плоскости. Исходные ортогональные проекции и необходимые построения. Построение перспективы второй окружности, расположенной в параллельной плоскости. Основы построения теней в перспективе.

    курсовая работа, добавлен 25.04.2017

  • Характеристика основных правил вычисления площади поверхности. Определение площади куска касательной плоскости. Порядок расчета поверхностного интеграла II-го рода. Составление уравнения направляющей цилиндра и вычисление площади части поверхности.

    лекция, добавлен 17.01.2014

  • Комплексные числа и их геометрическая интерпретация, свойства модуля и аргумента. Математические действия с ними: сложение и вычитание, умножение и деление, возведение в степень и извлечение корня. Решение квадратного уравнения с комплексным неизвестным.

    курсовая работа, добавлен 26.12.2011

  • Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.

    курсовая работа, добавлен 23.04.2011

  • Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.

    разработка урока, добавлен 08.06.2019

  • Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.

    презентация, добавлен 13.04.2012

  • Понятие и равенство векторов. Законы сложения векторов. Произведение вектора на число. Применение векторов к решению задач. Средняя линия трапеции. Уравнение линии на плоскости. Теорема о площади треугольника. Вычисление площади многоугольника.

    курс лекций, добавлен 08.10.2017

  • Координаты на прямой и на плоскости. Простейшие задачи аналитической геометрии на плоскости. Линии первого порядка. Геометрические свойства линий второго порядка. Преобразование уравнений при изменении координат. Уравнение поверхности и уравнения линии.

    учебное пособие, добавлен 14.03.2014

  • Предмет начертательной геометрии. Методы центрального и параллельного проецирования. Точка, прямые и плоскости общего и частного положения на эпюре Монжа. Способы преобразования ортогональных проекций. Классификация поверхностей и многогранники.

    учебное пособие, добавлен 17.12.2014

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.

    презентация, добавлен 18.12.2017

  • Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.

    курсовая работа, добавлен 14.06.2017

  • Деление отрезка прямой в заданном отношении по средствам построения. Геометрическое определение "золотого сечения". Вывод формул для нахождения координат точки, делящей отрезок в данном отношении. Применение теорем Менелая и Чевы для решения задач.

    курсовая работа, добавлен 18.05.2016

  • Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.

    разработка урока, добавлен 20.12.2010

  • Отображения и преобразования. Современное определение и основные понятия проективной геометрии на плоскости. Перспективно-аффинное соответствие двух плоскостей. Построение главных направлений. Аналитическая аффинная геометрия. Проективные ряды и пучки.

    учебное пособие, добавлен 31.03.2015

  • Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.

    реферат, добавлен 10.01.2009

  • Использование движения плоскости в начертательной геометрии для установления и исследования функциональной зависимости между различными величинами. Вращение плоскости и пространства, определение его центра и оси. Классификация видов и формул поворота.

    курсовая работа, добавлен 16.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.