Комплексные числа в планиметрии
Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательству некоторых основных планиметрических теорем (отрезок; параллельность и перпендикулярность; углы и площади; треугольники; прямые и окружности).
Подобные документы
Геометрическая интерпретация комплексных чисел и действий над ними. Формулы длины отрезка и скалярного произведения векторов. Параллельность, коллинеарность, перпендикулярность. Двойное отношение четырёх точек плоскости. Полюсы относительно окружности.
учебное пособие, добавлен 28.12.2013Понятие планиметрии как раздела геометрии, изучающего фигуры на плоскости. Понятие аксиомы принадлежности, расположения, измерения, откладывания, параллельности фигур, точек, прямых, трапеций, окружности, параллелограмма, их краткая характеристика.
презентация, добавлен 29.04.2015Системы общих комплексных чисел. Решение уравнений второй и высших степеней. Применение двойных чисел, формулы их сложения, вычитания, умножения и деления двойных чисел. Ориентированные прямые плоскости Лобачевского. Предельный случай пересекающих прямых.
реферат, добавлен 30.11.2015Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.
реферат, добавлен 02.04.2022Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.
лекция, добавлен 09.07.2015История развития комплексных чисел. Соглашение о комплексных числах. Сложение, деление и вычитание комплексных чисел, их геометрическое изображение. Модуль и аргумент комплексного числа. Геометрический смысл сложения и вычитания комплексных чисел.
доклад, добавлен 21.10.2011Использование основных инструментов динамической геометрической среды GeoGebra. Теоретические сведения из школьного курса геометрии. Вписанные и центральные углы. Вписанные и описанные окружности. Решение задач на окружности с применением GeoGebra.
дипломная работа, добавлен 03.05.2018Геометрия Лобачевского (гиперболическая геометрия) как одна из неевклидовых геометрий. Евклидова аксиома о параллелях. Разработка модели планиметрии. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому.
реферат, добавлен 28.05.2014Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.
курсовая работа, добавлен 22.04.2011История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Свойства комплексных чисел. Описание действий с ними. Основная теорема алгебры. Модуль комплексного числа.
реферат, добавлен 13.12.2022Операции над комплексными числами. Проблема разрешимости любого квадратного уравнения как одна из причин введения комплексных чисел. Геометрическая интерпретация комплексных чисел, их тригонометрическая форма. Векторная интерпретация комплексных чисел.
реферат, добавлен 18.01.2011Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.
презентация, добавлен 05.10.2015История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.
контрольная работа, добавлен 30.01.2010Позиционные задачи - задачи, связанные с определением взаимного расположения геометрических фигур. Определение точки пересечения прямой с плоскостью. Перпендикулярность и параллельность прямой и плоскости. Построение линии пересечения двух плоскостей.
лекция, добавлен 20.12.2010Характеристика параллельных прямых на плоскости в курсе планиметрии. Теоремы как признаки параллельности прямых, а также роль их аксиомы. Параллельность прямых в пространстве и особенности скрещивающихся линий. Теорема о линиях и ее доказательство.
реферат, добавлен 07.07.2014Аксиоматика и основные понятия стереометрии и ее роль в развитии пространственных представлений. Параллельность двух плоскостей: определение, признак, свойства, теорема. Перпендикулярность прямой и плоскости: определение, основные признаки и свойства.
реферат, добавлен 25.11.2012Понятие параллельных плоскостей. Невозможные структуры де Мея. Параллельность в природе. Использование математических теорем при доказательстве геометрического признака. Параллельность боковых сторон трапеции. Наличие общих точек у прямой и плоскости.
презентация, добавлен 09.02.2014Параллельность прямых, прямой и плоскости, взаимное расположение прямых в пространстве. Перпендикулярность прямой и плоскости. Понятие вектора в пространстве, сложение и вычитание векторов. Координаты точки и координаты вектора. Определение объема тел.
учебное пособие, добавлен 24.02.2014Первые три аксиомы и взаимное расположение точек и прямых, расположение одной точки между двумя прямыми. Формулировка аксиомы, наложение, отрезок и прямые, луч и неразвернутый угол. Система аксиом планиметрии, завершающая аксиома параллельных прямых.
презентация, добавлен 13.04.2012Характеристика раздела геометрии, в котором изучаются изображения на поверхности. Точка и прямая как основные геометрические фигуры на плоскости. Проведение исследования аксиом принадлежности, расположения, измерения, откладывания и параллельности.
презентация, добавлен 25.01.2017Определение преимуществ векторного метода для доказательства некоторых теорем и решения задач по планиметрии. Доказательства теорем векторным методом. Доказательства основных соотношений, применяемых при решении задач. Разложения неколлинеарных векторов.
презентация, добавлен 10.04.2013История возникновения комплексных чисел, их утверждение в математике. Геометрическое изображение комплексных чисел, их тригонометрическая форма. Действия с числами: сложение, вычитание, умножение и деление. Решение уравнений с комплексными переменными.
реферат, добавлен 29.08.2014Алгебраические операции над комплексными числами и комплексное сопряжение. Показательная функция комплексного аргумента и применение формулы Эйлера. Геометрическая интерпретация комплексных чисел. Разложение многочлена с действительными коэффициентами.
курс лекций, добавлен 23.10.2013- 25. Числовые системы
Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.
учебное пособие, добавлен 16.06.2015