Доказательство великой теоремы Ферма методом деления
На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.
Подобные документы
Подходы к доказательству теоремы Ферма и обоснование ее физического смысла. Принципы и этапы решения исследуемой задачи с использованием современных технологий. Описание физической сущности идей, заложенных в абстракции общей теории относительности.
статья, добавлен 23.11.2018Множини та операції з ними. Основний принцип комбінаторики, правило множини. Декартів добуток двох множин. Біном Ньютона та біноміальні тотожності. Мала теорема Ферма. Шпернерові сімейства та теорема Шпернера. Перестановки та комбінації з повторенням.
учебное пособие, добавлен 11.04.2013Характеристика особенностей уравнений с параметрами. Ознакомление со способами нахождения абсциссы и построения "склеенных" гипербол. Анализ методов выделения в уравнении полных квадратов и разложения его на множители. Изучение неравенств с параметрами.
контрольная работа, добавлен 29.05.2017Формула нахождения очень больших простых чисел. Алгоритмы разложение больших чисел на простые множители. Вычисление ряда чисел Фибоначчи. Числовой код треугольника Паскаля. Простые числа как основа защиты электронной коммерции и электронной почты.
статья, добавлен 03.03.2018Изучение возможности решения уравнения гипотезы Била через рассмотрения таблицы степеней отобранных автором чисел. Установление закономерностей их повторения в рамках обобщение теоремы Ферма. Исследование свойства уравнения, не оговоренного математиком.
статья, добавлен 03.03.2018Простейшие тригонометрические уравнения в алгебре. Порядок разложения равенств на множители. Изучение метода подстановки как алгебраического способа решения системы линейных уравнений. Дробно-рациональные и иррациональные тригонометрические уравнения.
реферат, добавлен 31.03.2014Описание доказательства теоремы Хоукинга, согласно которой в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Особенности этапов решения данной теоремы путем разложения прямоугольного треугольника на два равнобедренных.
задача, добавлен 23.02.2011Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.
реферат, добавлен 12.09.2010- 59. Теория Фалеса
Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.
презентация, добавлен 01.02.2016 Отыскание простых множителей натурального числа. Известный алгоритм Евклида для отыскания наибольшего общего делителя двух чисел как прием факторизации. Факторизация по разности квадратов. Упрощение вычислений с помощью знаний признаков делимости.
статья, добавлен 15.09.2012Разделы теории групп: конечные, абелевы, разрешимые и др. Теорема о единственности разложения в сумму примарных абелевых групп по разным простым числам. Накрывающее свойство свободной абелевой группы конечного ранга и доказательство структурной теоремы.
курсовая работа, добавлен 15.01.2015Решение уравнений и систем в различных кольцах и полях как классическая задача алгебры и теории чисел. Алгоритмы решения полиномиальных уравнений и систем в полях алгебраических чисел, основанные на лемме о подъеме решения полиномиального сравнения.
статья, добавлен 18.01.2021История теории алгоритмов. Определение, свойства и типы алгоритмов. Действия с обыкновенными дробями. Алгоритмы в изучении различных школьных предметов. Разложение на простые множители. Арифметические действия с положительными и отрицательными числами.
реферат, добавлен 02.12.2013- 64. Математика ЕГЭ
Свойства делимости целых чисел. Сущность канонического разложения. Факториал, сумма делений натурального числа. Характеристика алгоритма Евклида. Основные факторы делимости и восстановление цифр. Понятие малой теоремы Ферма. Целые рациональные выражения.
учебное пособие, добавлен 12.09.2013 Разложение общей формулы оберквадратов на множители. "Плохие" и "хорошие" числа. Вычисление разности между двумя последовательными числами. Вычеты по модулю 5 при умножении. Остатки от деления при возведении в степень. Определение наибольшей длины цикла.
презентация, добавлен 16.03.2014- 66. Пьер де Ферма
Ферма - последний математик-алхимик, гениальный компилятор, один из четырех титанов математики нового времени. Трактат "О сравнении кривых линий прямыми". Ферма нашел достаточные условия существования максимумов, научился определять точки перегиба.
реферат, добавлен 05.03.2009 Методы решения алгебраических уравнений 3-й и 4-й степени с одним неизвестным. Доказательство теоремы Абеля. Понятие группы и ее свойства. Теорема алгебры комплексных чисел. Функции комплексного переменного. Римановы поверхности сложных выражений.
книга, добавлен 28.12.2013Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.
контрольная работа, добавлен 30.10.2010- 69. Теорема Виета
Доказательство теоремы Виета, в том числе ее применение для приведенного и неприведенного квадратного уравнения. Практические задачи и ситуации, в которых может использоваться теорема, а также краткая биография французского математика Франсуа Виета.
презентация, добавлен 18.04.2011 Рассмотрение уравнений второго порядка, разрешенных относительно второй производной. Формулировка и доказательство теоремы Коши (о существовании и единственности решения дифференциального уравнения). Геометрический смысл теоремы, ее общее решение.
презентация, добавлен 17.09.2013- 71. Теорема Пифагора
Ознакомление с первоначальной и современной формулировами теоремы Пифагоа. Представление наиболее простого, алгебраического, геометрического и Евклидового методов доказательств теоремы. Определение значения данной теоремы в математических науках.
презентация, добавлен 15.03.2011 Формулы Абеля для Случая I и II Великой теоремы. План предметного доказательства Основного утверждения. Прототип Великой теоремы к части А и В. Внушительный текущий результат по элементарному доказательству Великой теоремы, новизна в подходе к проблеме.
книга, добавлен 01.12.2010Понятие комплексного числа. Алгебраическая форма записи комплексного числа. Рассмотрение тригонометрической и показательной формы. Основные действия над комплексными числами. Разложение многочлена на множители. Разложение правильных рациональных дробей.
курс лекций, добавлен 27.08.2017- 74. Теорема Фалеса
Теорема Фалеса - одна из теорем планиметрии. Доказательство обобщенной теоремы (параллельные прямые отсекают на секущих пропорциональные отрезки). Другие геометрические теоремы, доказанные ученым. Их практическое использование при измерении расстояний.
презентация, добавлен 20.09.2012 Решение неопределенных уравнений только в целых числах. Применение в современной математике направления, занимающегося исследованиями диофантовых уравнений, поиском способов их решений. Изобретение Ферма, его интерес к поиску целочисленных решений.
статья, добавлен 12.04.2019