Доказательство великой теоремы Ферма методом деления

На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.

Подобные документы

  • Формулировка проблемы достижения условия непрерывности G и описание соответствующих уравнений для решения этой задачи. Функционалы "сдвиг кривой" и Квази-G1. Решение вариационных задач без ограничений в соответствии с теоремой Ферма, описание алгоритма.

    статья, добавлен 21.06.2018

  • Совершенствование практических умений и навыков при разложении многочлена на множители методом вынесения общего множителя за скобки. Развитие устной математической речи. Воспитание самостоятельности, интереса к предмету. Закрепление изученного материала.

    конспект урока, добавлен 13.04.2016

  • История разработок и формирования теоремы Пифагора, причины ее популярности: простота – красота – значимость. Исследование некоторых классических доказательств теоремы Пифагора, известных из древних трактатов. Оценка важности и значимости данной теоремы.

    реферат, добавлен 10.11.2010

  • Классификация и основные типы линейных интегральных уравнений. Решение уравнения Вольтерра и Фредгольма. Свойства характеристических чисел и собственных функций самосопряженного интегрального уравнения. Билинейное разложение для самосопряженных ядер.

    курс лекций, добавлен 08.11.2012

  • Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

    реферат, добавлен 18.03.2014

  • Введение понятия урчуктных (разрывных) функций в дифференциальное исчисление. Нули разрывной функции. Совокупность разрывных функций. Касательные с угловыми коэффициентами. Классическая теорема Ролля. Расчет производной по классической теореме Ферма.

    статья, добавлен 20.05.2018

  • История формирования и развития квадратных уравнений: направления и этапы их исследования в Древнем Вавилоне, Индии, Европе XIII–XVII вв. Схема нахождения корня. Способы решения данного типа уравнений: Разложение на множители, выделение полного квадрата.

    методичка, добавлен 18.12.2012

  • Краткая биография и первые научные достижения Франсуа Виета. Определение "формулы Виета" (зависимости между корнями и коэффициентами алгебраического уравнения). Доказательство теоремы и ее опровержение, а также практический пример использования.

    презентация, добавлен 22.02.2014

  • Понятие автоматического доказательства теоремы, противоречивость отрицания формулы. Алгоритм построения вывода методом резолюций. Отличие теоремы резолюций от правил modus ponens и производных правил. Проблема доказательства в логике. Дизъюнкция литер.

    презентация, добавлен 17.04.2013

  • Биография Пифагора. Неалгебраические доказательства теоремы. Древнекитайское, древнеиндийское доказательство. Доказательство Евклида. Алгебраические доказательства теоремы. Первое и второе доказательство. Определение косинуса угла. Головоломка "Пифагор".

    реферат, добавлен 30.01.2016

  • Тригонометрические функции числового аргумента. Метод замены переменной, разложения на множители, решения однородных тригонометрических уравнений. Отбор корней. Метод подстановки, введения новой переменной, алгебраического сложения и вычитания уравнений.

    курсовая работа, добавлен 10.05.2020

  • Понятие алгебраического уравнения четвертой степени, история его решения. Пример решения биквадратного и возвратного уравнений четвертой степени. Решение Декарта—Эйлера. Анализ схемы метода Феррари, разложения на множители и кубическая резольвента.

    доклад, добавлен 04.10.2013

  • Главные свойства деления и сравнения по ненулевому рациональному модулю четных чисел. Доказательство невозможности решения заданных уравнений в целых числах. Доказательство утверждения о том, что сумма двух простых нечетных чисел есть чётным числом.

    статья, добавлен 03.03.2018

  • Фундаментальное значение теоремы Пифагора для геометрии. Методы Евклида и Леонардо Давинчи. Алгебраическая формулировка теоремы. Доказывание ее через подобные треугольники, равнодополняемость, методом площадей. Применение в Индии "правила веревки".

    презентация, добавлен 17.11.2015

  • Деление беззнаковых чисел, схемы деления. Алгоритм деления целых двоичных беззнаковых чисел методом с восстановлением остатка и методом без восстановления остатка. Алгоритм деления целых двоичных знаковых чисел, представленных в дополнительном коде.

    реферат, добавлен 12.11.2011

  • Рассмотрение древней и современной формулировок теоремы Пифагора, ее значение в математике. Изучение алгебраического, геометрического и евклидового доказательств теоремы о равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов.

    презентация, добавлен 20.12.2011

  • Открытие теоремы Пифагором. Легенда о заклании быков Пифагором. Некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Биография Пифагора. Древнекитайское, древнеиндийское, а также алгебраические доказательства теоремы.

    реферат, добавлен 14.12.2012

  • Представление целых чисел с помощью письменных знаков. Характеристика аспектов биномиальной теоремы. Методика распределения простых чисел. Рассмотрение рациональных чисел как средства измерения. Теорема Лиувилля и конструирование трансцендентных чисел.

    книга, добавлен 25.11.2013

  • Уравнение Шрёдингера с некоторыми фиксированными физическими величинами. Задача Коши для уравнения Шрёдингера после преобразования Фурье. Проверка доказательства теоремы о бесконечной гладкости решений уравнения Шрёдингера с начальными условиями.

    курсовая работа, добавлен 05.03.2018

  • вникая в геометрические построения древних, Пьер де Ферма совершает открытие: для нахождения максимумов и минимумов площадей фигур не нужны сложные чертежи. Всегда можно составить и решить алгебраическое уравнение, корни которого определяют экстремум.

    доклад, добавлен 19.11.2008

  • Первые учителя Пифагора. Учреждение пифагорейской школы. Идеалистическое учение в античной философии. Числа у пифагорейцев. Открытие теоремы Пифагором. Классические доказательства теоремы Пифагора. Математические трактаты Древнего Китая и Древней Индии.

    реферат, добавлен 09.12.2011

  • Изучение метода последовательного исключения переменных. Элементарные преобразования строк расширенной матрицы. Доказательство теоремы Крамера. Нахождение обратной матрицы методом Гаусса. Определение числовых значений главных неизвестных через свободные.

    лекция, добавлен 29.09.2013

  • Динамическая система и обыкновенное дифференциальное уравнение. Теорема существования и единственности обыкновенного дифференциального уравнения. Интегрирование уравнения в полных дифференциалах. Свойства комплексных чисел и основная теорема алгебры.

    практическая работа, добавлен 02.03.2012

  • Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.

    учебное пособие, добавлен 19.01.2015

  • Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.

    реферат, добавлен 18.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.