Доказательство великой теоремы Ферма методом деления

На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.

Подобные документы

  • Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.

    разработка урока, добавлен 20.12.2010

  • Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.

    курсовая работа, добавлен 14.06.2017

  • Рассмотрение основной задачи геометрии чисел, а также теоремы Минковского с её доказательством. Объяснение таких понятий геометрии чисел, как решётки и критические решётки. В работе приводится, так называемая, "неоднородная задача" геометрии чисел.

    курсовая работа, добавлен 22.04.2011

  • Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.

    презентация, добавлен 21.09.2017

  • Деятельность философа, математика, музыканта и астронома Пифагора. Символические афоризмы и теория о переселении душ. История теоремы Пифагора, ее доказательства методом достроения, с использованием понятия равновеликости фигур и алгебраическим методом.

    реферат, добавлен 08.01.2013

  • Общая характеристика большой теоремы Ферма. Рассмотрение числовых равенств с целыми, положительными, взаимно простыми основаниями и натуральным показателем степени n > 1. Знакомство с операциями по разделению уравнений с каждым из уравнений системы.

    реферат, добавлен 22.04.2020

  • Получения явных выражений и нелинейных рекуррентных соотношений для решений диофантовых уравнений с помощью алгебраических чисел. Нахождение простого решения диофантова уравнения и уравнения Пелля. Рассмотрение возможности обобщения данного подхода.

    статья, добавлен 07.10.2015

  • Числовые равенства с взаимно простыми основаниями степеней и натуральным показателем степени n > 1. Условия верности таких числовых равенств. Расчет уравнений, при показателе степени равном количеству слагаемых равенств при помощи теоремы Ферма.

    научная работа, добавлен 10.02.2015

  • Матрица коэффициентов при неизвестных. Вычисление определителя и алгебраических дополнений. Скалярное произведение векторов. Уравнение прямой проходящей через точки. Разложение числителя и знаменателя дроби на множители. Нахождение производных функций.

    контрольная работа, добавлен 25.03.2014

  • Определение подобия треугольников в математике. Доказательство первого признака подобия треугольников. Теоремы второго и третьего признаков подобия и их доказательство. Пропорциональные отрезки в прямоугольном треугольнике. Формулировки теоремы Фалеса.

    презентация, добавлен 25.04.2012

  • Основная характеристика предельного значения функции. Главный анализ строения базы окрестностей бесконечно удаленной точки. Проведение исследования понятия предела числовой последовательности. Особенность разложения числителя и знаменателя на множители.

    доклад, добавлен 07.10.2016

  • Виникнення та розвиток числових уявлень, лічби і поняття числа. Історія нумерації і систем числення. Еволюція сучасних цифр. Основні етапи розвитку дробів. Натуральні і дробові числа. Велика та мала теореми Ферма. Теорія ірраціональних та дійсних чисел.

    учебное пособие, добавлен 19.04.2013

  • Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.

    контрольная работа, добавлен 24.11.2012

  • Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.

    реферат, добавлен 03.10.2012

  • Изучение геометрического смысла предела. Старшая степень числителя и знаменателя. Пределы с неопределенностью и метод их решения. Разложение числителя и знаменателя на множители. Использование формулы разности квадратов. Решение квадратных уравнений.

    лекция, добавлен 04.03.2014

  • Определение функций частное Ферма и их свойства. Примеры возможного использования функций Ф(а) для вычисления индексов элементов в группе Z(m). Методы получения и прикладное значение логарифмирования в мультипликативной группе кольца вычетов по модулю.

    статья, добавлен 15.09.2012

  • Биография Л. Эйлера - автора работ по математическому анализу, дифференциальной геометрии, теории чисел, приближенным вычислениям. Научные труды Л. Эйлера: ряд Эйлера-Маклорена, задача о колебании струны, волновое уравнение. Обобщение теоремы Ферма.

    контрольная работа, добавлен 16.06.2019

  • Изучение нормальной формы линейного преобразования, его собственные и присоединенные векторы. Выделение подпространства, в котором преобразование А имеет только одно собственное значение и приведение его к нормальной форме, инвариантные множители.

    курсовая работа, добавлен 14.03.2010

  • Метод разложения на множители, его применение. Метод замены переменных и сведение к алгебраическим уравнениям. Универсальная тригонометрическая подстановка. Порядок введения вспомогательного аргумента. Решение системы тригонометрических уравнений.

    методичка, добавлен 22.03.2014

  • Исследование цепных дробей, раскрытие их свойств. Особенности разложения действительных чисел. Анализ погрешностей, возникших в результате раскладывания. Применение теории цепных дробей для решения алгебраических задач, доказательство теоремы Лагранжа.

    курсовая работа, добавлен 14.06.2014

  • Приведены формулы, устанавливающие связь между цугами и составными событиями бинарной последовательности. Доказана теорема: "Формула для цуг из составных событий", что переводит комбинаторику длинных последовательностей на физико-математический уровень.

    статья, добавлен 11.07.2018

  • Порядок решения классического диофантового уравнения. Применение расширенного алгоритма Евклида. Пример программы нахождения целочисленных результатов с помощью компьютерных технологий на языке программирования Pascal. Биективное отображение данных.

    практическая работа, добавлен 11.12.2014

  • Корень нечетной степени из отрицательного числа. Разложение квадратного трехчлена на множители. Степенная функция с отрицательным дробным показателем. Графический метод решения квадратного неравенства. Свойства степени с натуральным показателем.

    учебное пособие, добавлен 25.04.2014

  • Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.

    реферат, добавлен 29.10.2013

  • Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.

    шпаргалка, добавлен 01.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.