Исследование алгоритмов кластеризации данных
Классификация алгоритмов кластеризации. Создание самоорганизующихся нейронных сетей, являющихся слоем или картой Кохонена, в MATLAB NNT. Создание сети, правило настройки смещений, реализация циклов обучения. Моделирование кластеризации данных.
Подобные документы
Основные преимущества использования современных инструментов и технологий, таких как базы данных, хранилища данных и облачные решения, для эффективного управления большими объемами данных. Рассмотрение методов индексирования и кластеризации данных.
статья, добавлен 13.12.2024Анализ дискретизирования моделей Simscape Power Systems для повышения скорости симуляции. Исследование состава библиотеки Simulink. Создание алгоритмов для микроконтроллеров с помощью MatLab. Моделирование элементов, устройств и систем электроэнергетики.
контрольная работа, добавлен 06.12.2017Общее описание нейронных сетей, их виды: однослойные и многослойные сети, персептрон, сети Хопфилда. Описание программных моделей и алгоритмов их обучения. Релаксация стимула, возникновение ложного образа и выработка прототипа, бистабильность восприятия.
контрольная работа, добавлен 12.05.2015Интеллектуальный анализ данных, группировка схожих документов в отдельные кластеры. Проведение исследований по кластеризации текстовых данных: предварительная обработка, векторизация, запуск алгоритма машинного обучения и оценка качества разбиения.
дипломная работа, добавлен 30.06.2017Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Характеристика и особенности процесса построения нечеткого классификатора, специфика и применение метода субтрактивной кластеризации. Нечеткий классификатор на основе субтрактивной кластеризации. Сущность оптимизации структуры нечеткого классификатора.
статья, добавлен 17.01.2018Проблема повышения производительности подсистемы кэш-памяти систем хранения данных. Аналитическое моделирование алгоритмов обработки данных с помощью метода Марковских цепей. Использование хеш-таблицы для построения управляющих индексных таблиц.
статья, добавлен 07.03.2019Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.
дипломная работа, добавлен 19.11.2015Моделирование абстрактных типов данных (АТД) для различных реализаций. Поиск информации в файлах данных. Исследование эффективности алгоритмов сортировок для различных структур и размерностей. Реализация структур данных типа дерево и типовые алгоритмы.
курсовая работа, добавлен 28.10.2017Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
автореферат, добавлен 29.03.2018Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Построение средств интеллектуального анализа данных для нечетких реляционных серверов. Задачи кластеризации и выявления зависимостей в форме нечетких продукций. Гибридный алгоритм использования нечеткой нейронной сети в качестве DM для реляционных данных.
статья, добавлен 17.01.2018Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Анализ структур данных и алгоритмов ее обработки. Разработка алгоритмов программного средства. Выбор языка программирования. Программная реализация структур данных и алгоритма обработки. Оценка сложности алгоритма. Тестирование программного средства.
курсовая работа, добавлен 11.02.2021Структурно-функциональное решение интеллектуального репозитория. Подсистема нейросетевой и генетической кластеризации, их особенности, преимущества. Алгоритм параллельного выполнения fcm-кластеризации. Предназначение кроссовера, оценка приспособленности.
статья, добавлен 18.01.2018Подготовка данных, входы и выходы нейросети, изменения котировок. Выбор программного обеспечения: Matlab, Statistica, BrainMaker, NeuroShell Day Trader. Подготовка данных средствами MetaTrader. Знакомство с Matlab и обучения нейросетей в пакете AnfisEdit.
реферат, добавлен 02.12.2011История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.
дипломная работа, добавлен 12.01.2012Проблема объединения результатов распределённых вычислений для совместной обработки головным процессором. Реализация параллельно-последовательной древовидной структуры обмена с помощью нового параллельного алгоритма кластеризации GRID-ресурсов.
статья, добавлен 02.02.2019- 69. Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
статья, добавлен 29.05.2017 - 70. Добыча данных
Способы добычи информации из интегрированных систем. Недостатки программного комплекса статистической обработки данных. Характеристика нейронных сетей. Применение деревьев решений и генетических алгоритмов. Принципы эволюционного программирования.
реферат, добавлен 17.05.2016 Методика статистического моделирования данных для обучения нейронных сетей с целью прогнозирования прочностных свойств волокнисто-пористых биокомпозитов. Количество данных, необходимое для обучения и тестирования сети. Эмпирическая линейная регрессия.
статья, добавлен 27.04.2017Моделирование абстрактных типов данных для различных реализаций. Поиск информации в файлах данных. Эффективность алгоритмов сортировок для различных структур и размерностей данных. Реализация структур данных типа дерево и типовые алгоритмы их обработки.
курсовая работа, добавлен 12.11.2017Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Общая структура топологии применения генетических алгоритмов для обучения нейронных сетей. Методы и алгоритмы предварительной подготовки данных, расчета структуры нейросети и модифицированных методов обучения, проверки работы на валидационной выборке.
статья, добавлен 12.05.2017Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013