Законы больших чисел

Понятия случайного события и величины. Теорема Пуассона, Ляпунова и Бернулли, утверждающая, что если вероятность события одинакова, то с ростом числа испытаний частота события стремится к вероятности и перестает быть случайной. Закон "безобидных" игр.

Подобные документы

  • Математическое ожидание, дисперсия, среднее квадратичное отклонение. Биноминальный закон распределения. Теория массового обслуживания. Закон больших чисел и теорема Бернулли. Вероятность попадания на малый интервал времени двух или более событий.

    лекция, добавлен 29.06.2016

  • Основные понятия теории вероятности. Понятие события и его основные виды. Вероятность событий: классическое и статистическое. Элементы комбинаторики. Теорема сложения вероятностей. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли.

    курсовая работа, добавлен 07.06.2014

  • Понятия случайной величины и события. Основные законы распределения, используемые в теории надежности. Математическое ожидание и среднеквадратическое отклонение числа событий. Определение интенсивности отказов и вероятности безотказной работы устройства.

    реферат, добавлен 18.10.2016

  • Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.

    курсовая работа, добавлен 19.10.2014

  • Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.

    курс лекций, добавлен 23.04.2016

  • Процесс определения одних понятий через другие. Понятие случайного и достоверного события. Невозможное событие как противоположность достоверного. Установление единицы измерения вероятности. Принцип практической уверенности, подсчет вероятностей.

    реферат, добавлен 30.10.2010

  • Рассмотрение интересных закономерностей в возникновении случайного события. Изучение теорем сложения вероятностей. Как работает закон равномерной плотности вероятности. Приведение примеров случайных величин. Обоснование функции распределения, ее свойства.

    реферат, добавлен 04.02.2010

  • Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.

    учебное пособие, добавлен 24.11.2014

  • Теория вероятности и математическая статистика. Основные категории: событие, вероятность, случайность. Теоремы сложения и умножения. Вероятность гипотез, формула Байеса. Независимые события. Биномиальное распределение. Редкие события, формула Пуассона.

    методичка, добавлен 21.10.2010

  • Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.

    дипломная работа, добавлен 27.09.2012

  • Формула классической вероятности. Теоремы сложения и умножения вероятностей. Формула полной вероятности, Байеса, Бернулли, Пуассона. Числовые характеристики дискретных случайных величин: дисперсия и пр. Законы распределения непрерывной случайной величины.

    курсовая работа, добавлен 04.01.2016

  • Определение числа исходов, благоприятствующих появлению заданного события. Проведение независимых испытаний. Применение теоремы Пуассона. Нахождение математического ожидания, дисперсии, среднего квадратического отклонения и функции распределения.

    контрольная работа, добавлен 20.12.2015

  • Сущность события как элементарного множества пространства элементарных исходов. Характеристика основных видов: достоверный, невозможный. Классическое определение вероятности и понятие "классической схемы". Применение формулы Байеса и схема Бернулли.

    лекция, добавлен 29.10.2013

  • Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.

    краткое изложение, добавлен 21.03.2018

  • Предмет и понятия теории вероятностей. Относительная частота случайного события и ее устойчивость. Теорема умножения и сложения вероятностей. Основные понятия и методы математической статистики. Генеральная совокупность и выборка. Вариационный ряд.

    учебное пособие, добавлен 24.06.2014

  • Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.

    лекция, добавлен 21.03.2018

  • Определение вероятности суммы совместных событий. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон (распределение Гаусса). Функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    презентация, добавлен 10.08.2015

  • Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.

    лекция, добавлен 25.01.2013

  • Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.

    учебное пособие, добавлен 12.03.2015

  • Определение вероятности случайного события. Закон распределения случайной величины и расчет числовых характеристик (математического ожидания и дисперсии). Точечные оценки математического ожидания. Оценка коэффициента корреляции, расчет линейной регрессии.

    контрольная работа, добавлен 26.10.2014

  • Дискретные и непрерывные случайные величины. Функция распределения вероятностей случайной величины и ее свойства. Плотность распределения вероятностей. Числовые характеристики непрерывных случайных величин. Законы распределения, теорема Ляпунова.

    курсовая работа, добавлен 01.11.2014

  • Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.

    курс лекций, добавлен 24.04.2015

  • Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.

    реферат, добавлен 05.12.2021

  • Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).

    учебное пособие, добавлен 16.02.2014

  • Классическая формула сложения вероятностей, геометрические вероятности. Формула Байеса и схема Бернулли. Закон распределения случайной величины. Ковариация и коэффициент корреляции, функция распределения и функция плотности непрерывной случайной величины.

    курсовая работа, добавлен 25.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.