Законы больших чисел

Понятия случайного события и величины. Теорема Пуассона, Ляпунова и Бернулли, утверждающая, что если вероятность события одинакова, то с ростом числа испытаний частота события стремится к вероятности и перестает быть случайной. Закон "безобидных" игр.

Подобные документы

  • Изучение случайных явлений, статистическая обработка результатов численных заданий. Решение задач, связанных с теорией вероятности. Способы вычисления наступления предполагаемого события. Вероятность попадания случайной величины в заданный интервал.

    контрольная работа, добавлен 18.12.2013

  • Определение вероятности, следствие из принципа практической невозможности маловероятных событий. Теорема Муавра–Лапласа. Закон распределения случайной величины. Дискретная случайная величина. Математическое ожидание дискретной случайной величины.

    контрольная работа, добавлен 12.11.2015

  • Способы распределения медалей между игроками. Случайное событие и его дополнение. Описание пространства элементарных событий. Формула нахождения вероятности появления хотя бы одного события. Нахождение функции распределения дискретной случайной величины.

    методичка, добавлен 20.12.2011

  • Определение вероятности того, что будут сданы два первых экзамена. Вычисление значения функции распределения. Построение многоугольника распределения. Нахождение математического ожидания, дисперсии и среднего квадратического отклонения случайной величины.

    контрольная работа, добавлен 26.05.2015

  • Формирование треугольника из трех произвольных отрезков. Расчет вероятности события исходя из оценки количества благоприятных случаев. Вычисление по формулам математического ожидания, дисперсии и среднеквадратического отклонения случайной величины.

    контрольная работа, добавлен 15.11.2014

  • Операции над событиями. Частость наступления события. Аксиоматика теории вероятности. Построение вероятностного пространства. Классическое определение вероятности. Обоснование формулы условной вероятности в общем случае. Формула сложения вероятностей.

    реферат, добавлен 27.11.2015

  • Сущность теорем распределения Бернулли и Пуассона. Биномиальное распределение (распределение Бернулли). Распределение Пуассона. Определение и основные характеристики закона Пуассона. Дополнительные характеристики распределения Пуассона. Примеры задач.

    реферат, добавлен 08.11.2008

  • Определение закона распределения случайной величины. Нахождение плотности распределения, математического ожидания, дисперсии и среднего квадратического отклонения. Построение графиков дифференциальной и интегральной функций. Анализ вероятности события.

    контрольная работа, добавлен 14.12.2015

  • Статистическое определение выходных результатов как основная цель статистического моделирования. Табличные и алгоритмические генераторы случайных чисел. Моделирование случайного события. Моделирование случайной величины с заданным законом распределения.

    курс лекций, добавлен 16.04.2013

  • Определение вероятности по формулам Бернулли и Байеса. Проведение исследования интегрального закона распределения. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Особенность построения статистического разделения.

    контрольная работа, добавлен 24.05.2016

  • Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.

    доклад, добавлен 13.03.2022

  • Логическая сумма несовместных событий. Произведение вероятностей для независимых событий. Вероятность появления бездефектной детали. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины.

    контрольная работа, добавлен 01.03.2015

  • Вероятность случайного события - положительное число, заключенное между нулем и единицей. Пространство элементарных событий – множество исходов испытания, которые могут появиться при его проведении. Характеристика основных аксиом теории вероятности.

    курсовая работа, добавлен 21.03.2022

  • Бросание монеты как повторные независимые испытания с постоянной вероятностью появления события, оценка возможности выпадения герба или решки. Анализ вероятности нормальной работы автобазы в ближайший день, а также выхода каждой автомашины на линию.

    контрольная работа, добавлен 05.12.2013

  • Анализ возможных значений случайной величины и вычисление вероятности их появления. Использование формулы Бернулли в определении вероятности наступления событий, построение графика функции распределения. Расчет математического ожидания и дисперсии.

    контрольная работа, добавлен 20.10.2023

  • Порядок и принципы построения распределения вероятности занятия линий в пучке из V-линий в соответствии с распределениями Бернулли, Пуассона и Эрланга. Расчет математического ожидания числа занятых линий, их дисперсии и среднеквадратического отклонения.

    задача, добавлен 10.12.2015

  • Рассмотрение центральной предельной теоремы. Характеристика неравенства Чебышева, изучение его доказательства. Определение особенностей закона больших чисел в форме Чебышева. Выявление значения теоремы Бернулли, Пуассона. Формулировка неравенства Маркова.

    реферат, добавлен 12.11.2015

  • Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.

    контрольная работа, добавлен 06.12.2017

  • Изложение методов решения задач на нахождение условной вероятности: вероятность суммы двух несовместимых событий; вероятность совместного появления двух зависимых событий, равная произведению вероятности одного из них на условную вероятность второго.

    задача, добавлен 07.06.2014

  • Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.

    курс лекций, добавлен 29.09.2014

  • Основные понятия теории вероятностей. Закон распределения дискретной случайной величины. Числовые характеристики дискретных случайных величин. Свойства и вычисления дисперсии. Условное математическое ожидание. Закон больших чисел. Неравенство Чебышева.

    курс лекций, добавлен 02.09.2016

  • Способы определения вероятности осуществления того или иного события. Оценка математического ожидания и дисперсии некой величины, построение графика функции распределения. Оценка плотности вероятности. Расчет диаграммы рассеивания и линии регрессии.

    контрольная работа, добавлен 18.04.2013

  • Особенности определения математического ожидания, дисперсии и среднего квадратического отклонения случайной величины. Рассмотрение локальной теоремы Лапласа. Методика определение вероятности события. Основы построения гистограммы и полигона частот.

    задача, добавлен 09.01.2014

  • Средняя арифметическая взвешенная, количество величин с одинаковым значением. Таблица Лапласа и линейная связь. Вероятность достоверного события и дисперсия случайной величины. Оценка математического ожидания. Дискретная и непрерывная случайная величина.

    контрольная работа, добавлен 30.09.2013

  • Сущность и разновидности случайных событий. Классическое определение вероятности и его ограниченность, а также характерные свойства. Относительная частота события, е определение и оценка, влияющие факторы. Исследование примеров вычисления вероятностей.

    контрольная работа, добавлен 30.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.