Основные вероятностные схемы испытаний
Классическая схема случаев - испытание, где число элементарных исходов конечно, и все они несовместны и равновозможны. Правила суммы, произведения. Характеристика схемы испытаний Бернулли, интегральной теоремы Муавра-Лапласа, схемы Пуассона, цепи Маркова.
Подобные документы
Ознакомление с графическими методами представления данных и методами биостатистики. Изучение законов распределения дискретных случайных величин: биномиального распределения (Бернулли) и распределения Пуассона. Анализ эмпирических законов распределения.
реферат, добавлен 10.11.2017Алгоритм обобщения итерационно-интерполяционного метода (ИИМ) для решения трехмерного волнового уравнения. Постановка задачи и метод построения разностной схемы. Устойчивость схемы ИИМ по начальным данным. Сходимость и примеры применения метода.
статья, добавлен 04.05.2016Свойства преобразований Лапласа. Дифференцирование и интегрирование оригинала. Теоремы о начальном и конечном значении. Зависимость выходного сигнала системы от времени при подаче на ее вход некоторого типового воздействия. Импульсная переходная функция.
курсовая работа, добавлен 13.03.2014Определение ускорения всех подвижных шарнирных точек шестизвенного рычажного механизма. Построение кинематической схемы. Передаточное число и незаданные угловые скорости или частоты вращения колес и водила. Произведение расчетов аналитическим методом.
контрольная работа, добавлен 25.01.2015Определение вероятности того, что среди шести взятых одновременно деталей три окажутся первого вида. Проведение расчета вероятного числа студентов, родившихся 1 мая. Особенности применения полиноминальной схемы. Анализ закона распределения числа.
задача, добавлен 07.11.2013Метод Ньютона - универсальный способ нахождения границ многочлена. Раскрытие схемы Горнера. Доказательство теоремы Штурма. Сущность алгоритмов итераций, половинного деления, хорд и касательных. Решение задач на вычисление уравнений высших степеней.
курсовая работа, добавлен 06.01.2014Исследование конечной базируемости многообразий коммутативных алгебр Лейбница-Пуассона полиномиального роста в случае основного поля нулевой характеристики, их ограничение полиномом. Исследование частных случаев задачи, доказательство основных теорем.
статья, добавлен 31.05.2013Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.
контрольная работа, добавлен 06.11.2012Математические модели объектов управления в обычных и частных производных. Динамические звенья и структурные схемы систем управления. Понятие матрицы передаточной функции. Сущность первой теоремы Ляпунова и определение устойчивости линейных систем.
учебное пособие, добавлен 28.12.2013Изучаются копулы, полученные в результате преобразования независимости случайных векторов с распределением Стьюдента, а также для схемы серий зависимых случайных величин, связанных такими IT-копулами, доказаны варианты центральной предельной теоремы.
статья, добавлен 31.05.2013Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.
лекция, добавлен 25.01.2013Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.
реферат, добавлен 18.03.2014Разработка алгоритмического обеспечения построения методик испытаний авиационных управляемых ракет, основанного на интегрировании дифференциальных уравнений в форме Коши. Анализ соответствия характеристик движения авиационных ракет заданным требованиям.
статья, добавлен 07.03.2019Идентичность методов решения задач идентификации, возникающих при оценке результатов испытаний сложных динамических систем и задач теории оптимального управления. Математические модели объекта измерений. Идентификация состояния динамической системы.
статья, добавлен 27.05.2018- 115. Уравнение Бернулли
Уяснение физического смысла уравнения Бернулли. Определение потерь напора в трубопроводе переменного сечения. Способы измерения средней и локальной скоростей движения жидкости. Описание установки для демонстрации уравнения Бернулли, построение диаграммы.
лабораторная работа, добавлен 21.11.2018 Пространство элементарных исходов. События в дискретном пространстве. Сумма (объединение), произведение (пересечение), разность событий. Основные свойства операций над событиями. Вероятность в классическом пространстве. Понятие счётного множества.
презентация, добавлен 22.09.2017Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.
учебное пособие, добавлен 23.02.2011Аналитическое доказательство истинности заключения (теоремы) от противного. Содержательный (словесный) алгоритм по методу Вонга. Содержательный (словесный) алгоритм по методу пропозициональной резолюции. Блок-схемы и сравнительный анализ алгоритмов.
курсовая работа, добавлен 19.06.2012Доказательство того, что многочлен Бернулли четного (нечетного) порядка равен абсолютно сходящемуся ряду по объединению хаосов Радемахера четных (нечетных) порядков. Система функций Уолша. Определение одночленов Бернулли. Разложения первых многочленов.
статья, добавлен 31.05.2013Геометрический смысл интегральной суммы. Свойства верхних и нижних сумм. Лемма Дарбу. Необходимое и достаточное условие интегрируемости. Сущность равномерно непрерывных функций. Объемы тел вращения. Правила интегрирования. Формула прямоугольников.
реферат, добавлен 17.01.2011- 121. W-метод Н.В. Азбелева в теории линейных стохастических функционально-дифференциальных уравнений
Стохастическая версия W-метода, который восходит к работам Азбелева. Теоремы, которые можно рассматривать как фундамент общей схемы анализа устойчивости линейных стохастических функционально-дифференциальных уравнений. Пример скалярного уравнения Ито.
статья, добавлен 26.04.2019 - 122. Основы комбинаторики
Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.
шпаргалка, добавлен 06.11.2009 - 123. Теория вероятностей
Теоретические аспекты понятия "вероятностные пространства". Функции и типы распределения, их числовые характеристики и особенности преобразования случайных величин. Случайные процессы с непрерывным временем: общие определения и процесс Пуассона.
курс лекций, добавлен 20.12.2012 Типовые вероятностные задачи энергетического характера. Определение вероятностей случайных событий. Основные теоремы теории вероятностей. Законы распределения случайных величин, числовые характеристики их функций. Случайные явления, события и величины.
учебное пособие, добавлен 15.06.2015Фундаментальное значение теоремы Пифагора для геометрии. Методы Евклида и Леонардо Давинчи. Алгебраическая формулировка теоремы. Доказывание ее через подобные треугольники, равнодополняемость, методом площадей. Применение в Индии "правила веревки".
презентация, добавлен 17.11.2015