Оптимизация предобработки данных: константа Липшица обучающей выборки и свойства обученных нейронных сетей
Задача целенаправленной предобработки обучающей выборки для ускорения обучения нейросети. Значение константы Липшица выборки, как индикатор сложности выборки. Показатели зависимости свойств обученных нейронных сетей от величины константы Липшица выборки.
Подобные документы
Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.
статья, добавлен 26.04.2019Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.
дипломная работа, добавлен 14.12.2019Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.
курсовая работа, добавлен 22.05.2018Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.
статья, добавлен 12.07.2021Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.
статья, добавлен 26.04.2017Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013Создание классификационных и описательных шкал. Сбор исходной фактографической информации и ее ввод в систему обучающей выборки. Оценка ценности признаков для прогнозирования. Выделение признаков, наиболее существенных для решения поставленной задачи.
статья, добавлен 25.04.2017Методика разработки состязательных атак, которые основаны на словах и показывают возможность и силу изменения предсказываемого класса нейросети. Анализ особенностей применения регрессионных значений Шепли для интерпретации глубоких нейронных сетей.
дипломная работа, добавлен 28.11.2019Двумерная визуализация распределения примеров выборки в пространствах пар наиболее чувствительных признаков, оценка ее результатов. Повторение циклов из шагов исключения примеров-выбросов, повторного обучения нейросети, нового расчета чувствительностей.
статья, добавлен 08.02.2013- 35. Разработка методов и алгоритмов оценки надежности сетей телекоммуникации на основе нейронных сетей
Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.
диссертация, добавлен 24.05.2018 Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.
статья, добавлен 31.08.2018Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.
дипломная работа, добавлен 10.12.2019Свойства биологического нейрона. Алгоритм обратного распространения ошибки. Обучение с учителем. Виды нейронных сетей и их свойства и преимущество. Разработка системы тестирования. Выбор программных средств для разработки. Структура базы данных и системы.
дипломная работа, добавлен 07.08.2018Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Разработка модели обнаружения злоумышленника в информационной системе. Анализ результатов обучения и реализации нейронных сетей на основе персептрона и линейных нейронных сетей в пакете Matlab. Выявление аномального поведения пользователя в системе.
статья, добавлен 30.04.2018Анализ решения задачи дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Основные процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей.
статья, добавлен 01.03.2017Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.
дипломная работа, добавлен 30.07.2016Алгоритмы краткосрочного прогнозирования трендов экономических показателей агропромышленной корпорации. Разработка классификационных и описательных шкал и градаций и формирование обучающей выборки для интеллектуальной аналитической системы "Эйдос".
статья, добавлен 28.04.2017Рассмотрение подхода к автоматической кластеризации и классификации объектов по данным обучающей выборки с применением современных инструментальных средств. Известные методы решения задачи кластеризации. Выбор инструментальных средств решения задачи.
статья, добавлен 27.02.2019Особенности использования сигнатурного и эвристического анализа для обнаружения вирусов и вредоносных программ. Понятия "мера схожести" и "матрица схожести", разработка методики формирования обучающей выборки с использованием введённых определений.
статья, добавлен 28.07.2017Оптимизация процедуры поиска объектов на изображении. Иммунологический способ локализации узлов железнодорожных подвижных единиц на основе алгоритма клональной селекции. Применение одноклассового метода опорных векторов для формирования обучающей выборки.
статья, добавлен 28.07.2017Синтез и верификация модели прогнозирования развития многоотраслевой агропромышленной корпорации. Этапы АСК-анализа, проверка объектов обучающей выборки на достоверность путем идентификации. Схема преобразования данных в информацию в системе "Эйдос".
статья, добавлен 20.05.2017Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.
курс лекций, добавлен 17.01.2011Сравнение эффективности нескольких популярных алгоритмов распознавания электрокардиосигналов, используемых в машинном обучении. Смешанная гауссовская модель (GMM). Вероятностные кластерные назначения. Задача обучения с учителем. Влияние объема выборки.
контрольная работа, добавлен 01.09.2018