Метод наименьших квадратов

Характеристика метода наименьших квадратов, применяемого для оценки неизвестных параметров регрессионных моделей по выборочным данным, основанного на минимизации суммы квадратов остатков регрессии. Пример его использования в случае линейной зависимости.

Подобные документы

  • Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.

    презентация, добавлен 13.07.2015

  • Определение понятия "аппроксимация", сущность и особенности метода аппроксимации при анализе, обобщении и использовании эмпирических результатов. Получение эмпирических формул методом наименьших квадратов. Расчёт аппроксимаций экспериментальных данных.

    курсовая работа, добавлен 03.05.2014

  • Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.

    краткое изложение, добавлен 22.05.2010

  • Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.

    курсовая работа, добавлен 19.06.2015

  • Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.

    презентация, добавлен 20.01.2015

  • Случайная величина. Генеральная совокупность и выборка. Результат измерения. Доверительный интервал. Погрешности косвенных измерений. Алгоритм обработки данных косвенных измерений выборочным методом. Задача регрессии и метод наименьших квадратов.

    методичка, добавлен 24.05.2012

  • Методы получения адекватных моделей для решения управленческих задач. Свойства почв и метеоусловий северной и центральной зон Краснодарского края. Оценка урожайности по методу наименьших квадратов. Моделирование с помощью кусочно-линейной регрессии.

    статья, добавлен 26.04.2017

  • Принцип минимизации суммы квадратов отклонений. Численные методы поиска регрессионных коэффициентов для нелинеаризуемых задач. Проблема сравнения качества альтернативных регрессионных моделей. Нормировка значений зависимых переменных по методу Зарембки.

    презентация, добавлен 18.01.2015

  • Поиск выборочных ковариации и коэффициента корреляции. Доверительный интервал для математического ожидания величины. Оценка параметров модели методом наименьших квадратов. Тестирование близости эмпирического распределения остатков моделей к нормальному.

    контрольная работа, добавлен 10.11.2017

  • Основные понятия и определения планирования и организации эксперимента. Метод наименьших квадратов и факторный эксперимент. Дисперсионный анализ и построение теоретической функции методом квадратов. Регрессионная зависимость эксперимента, её анализ.

    курсовая работа, добавлен 27.09.2011

  • Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.

    контрольная работа, добавлен 19.05.2015

  • Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.

    презентация, добавлен 20.01.2015

  • Основные понятия и методы, используемые при обработке экспериментальных исследований. Классификация систематических погрешностей по причине возникновения. Идея метода наименьших квадратов. Случаи линейной, пропорциональной и нелинейной зависимостей.

    учебное пособие, добавлен 11.03.2014

  • Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.

    контрольная работа, добавлен 29.03.2013

  • Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.

    лекция, добавлен 10.10.2014

  • Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.

    презентация, добавлен 18.12.2012

  • Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.

    курсовая работа, добавлен 12.12.2014

  • Разработка рекуррентного алгоритма, позволяющего получать сильно состоятельные оценки параметров многомерных по входу линейных динамических систем при наличии помех наблюдения во входных и выходных сигналах. Оценка эффективности предложенного метода.

    статья, добавлен 31.08.2018

  • Распределение температуры вдоль тонкого цилиндрического стержня, помещенного в высокотемпературный поток жидкости или газа путем анализа математической модели. Задача регрессии. Метод наименьших квадратов. Проверка гипотезы об адекватности модели.

    контрольная работа, добавлен 10.06.2011

  • Анализ работ А.Н. Колмогорова по аксиоматическому подходу к теории вероятностей и средних величин. Исследование свойств медианы как оценки центра распределения. Характеристика эффекты "вздувания" коэффициента корреляции и метода наименьших квадратов.

    статья, добавлен 14.05.2017

  • Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.

    контрольная работа, добавлен 03.06.2009

  • Построение оценки функции регрессии с помощью метода наименьших квадратов. Нахождение значения коэффициента методами трапеций и парабол, решение уравнения. Изучение распределения температуры в тонком цилиндрическом стержне. Решение краевой задачи.

    дипломная работа, добавлен 24.12.2011

  • Решение экстремальных задач в математической статистике. Методы наименьших квадратов, главных компонент. Выборочные оценки параметров зависимости нечисловых данных. Рассмотрение теорем, касающихся асимптотики решений экстремальных статистических задач.

    статья, добавлен 19.12.2017

  • Основные понятия математической статистики. Оценка параметров, проверка гипотез и основы регрессионного анализа. Точечное и интегральное оценивание и их эффективность. Критерии согласия и линейная регрессия. Метод наименьших квадратов. Теорема Пирсона.

    курс лекций, добавлен 03.07.2013

  • Проекционный метод Галеркина, сущность метода коллокаций и наименьших квадратов, их преимущества и недостатки. Решение краевой задачи различными методами. Оценка погрешности применения данных методов относительно точного решения в конкретных точках.

    дипломная работа, добавлен 07.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.