Свойства сферы Sn
Множество Rn и расстояние в нем. Метрическое пространство как множество Х вместе с фиксированной в нём метрикой. Открытые и замкнутые множества. Общая характеристика и основные свойства сферы как множества точек. Некоторые примеры топологической сферы.
Подобные документы
Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
курс лекций, добавлен 06.08.2017Основы теории конечных и бесконечных множеств. Основные классы равномощных множеств. Выведение понятия мощности множества на основе равномощности. Сравнение множеств, их объединение, пересечение, разность и дополнение. Сущность аксиоматической теории.
контрольная работа, добавлен 25.06.2012Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.
реферат, добавлен 17.01.2011Обозначение множества и его графическое изображение. Операции пересечения, объединения, дополнения и прямого произведения множеств. Их равенство – источник недоразумений. Исследование социального положения жителей села с помощью математической теории.
творческая работа, добавлен 30.05.2015Множества и операции над ними. Функции и формулы алгебры логики. Важнейшие замкнутые классы. Обобщение понятия равенства, отношение упорядоченности. Принцип двойственной записи вычислений. Построение совершенных нормальных форм и закон коммутативности.
методичка, добавлен 05.05.2014Особенности толкования понятий множества и функции в математическом анализе. Определение предела числовой последовательности. Сущность и свойства сходящихся последовательностей. Определение непрерывности функции в точке. Функции, непрерывные на сегменте.
учебное пособие, добавлен 13.09.2015Характеристика общих понятий теории множеств. Изучение основных операций над множествами. Изучение соответствия между множествами, отображения. Анализ кортежей, декартовых произведений. Бинарные отношения и их свойства. Описание элементов комбинаторики.
презентация, добавлен 27.01.2017Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.
реферат, добавлен 16.01.2018Функция как математическое понятие, отражающее однозначную парную связь элементов одного множества с элементами из другого множества. Топология пространства арифметических векторов. Компактные множество и линейные отображения. Теорема Кантора и Бореля.
методичка, добавлен 07.08.2015Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.
учебное пособие, добавлен 18.01.2015Геометрические и аналитические представления mn параметров и основные соотношения. Упорядоченные множества точек в системе координат. Методика перемещения точки по кроне дерева ПТ. Пифагоровы треугольники в пограничных областях координатной системы.
монография, добавлен 10.02.2011- 37. Понятие сферы
Ознакомление с понятиями сферы, шара, окружности, круга. Исследование и характеристика принципов взаимного расположения сферы и плоскости. Рассмотрение исторических сведений о сфере и шаре. Изучение особенностей изображения сферы. Анализ уравнения сферы.
презентация, добавлен 13.12.2020 Множества и операции над ними. Декартово произведение множеств. Понятие и свойства алгоритма. Аксиоматический метод. Понятие о комбинаторной задаче. Математические утверждения и их структура. Основы математической логики. Соответствия и отношения.
курс лекций, добавлен 25.09.2017Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.
контрольная работа, добавлен 25.12.2011Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.
учебное пособие, добавлен 19.01.2015Теоретические аспекты понятия разности двух множеств как теоретико-множественной операции в математике, особенности пустого множества. Основные свойства разности множеств и сущность законов де Моргана. Реализация операции с помощью компьютерных программ.
реферат, добавлен 18.02.2012Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.
лекция, добавлен 29.09.2014Основные определения и понятия нечетких множеств, используемые для преобразования информации. Свойства нечетких отношений и операторы преобразований. Обсуждение вопросов измерения нечеткости, которая выражается в терминах метрического расстояния.
статья, добавлен 28.10.2018Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.
лекция, добавлен 12.07.2015Подсчет числа различных комбинаций как основная цель и задача комбинаторики. Классическая формула для нахождения вероятности. Перестановки элементов множества как упорядоченные элементы из всех элементов множества. Сочетание элементов вероятности.
презентация, добавлен 01.11.2013Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.
лекция, добавлен 18.10.2013Комбинаторика - древнейшая и ключевая ветвь математики, изучающая дискретные объекты, множества и комбинации из заданного числа элементов. Перебор и построение дерева возможных вариантов. Комбинаторное правило умножения, примеры конфигураций и задач.
презентация, добавлен 09.12.2014Свойства линейных операций над векторами. Векторное пространство как действительное множество направлений с действительными компонентами, в котором определены операции сложения векторов и умножения его на число, удовлетворяющие приведенным свойствам.
презентация, добавлен 21.09.2013Понятие планиметрии (свойства фигур на плоскости) и стереометрии (свойства фигур в пространстве). Основные модели геометрических тел: пирамида, цилиндр, шар, конус, куб и параллелепипед. Сферы применения стереометрии. Некоторые следствия из аксиом.
презентация, добавлен 13.04.2012Упорядоченные множества элементов. Структура представления многомерных матриц. Преобразование старшинства индексов. Метод гиперплоскостей для построения выпуклой области множества неупорядоченных элементов. Метод сингулярного разложения матрицы.
контрольная работа, добавлен 15.01.2018