Нейронные сети
Особенности программирования модели формального нейрона и персептрона Розенблатта, алгоритм и правило Хебба. Искусственный нейрон с активационной сигмоидальной логистической функцией. Персептронная система распознания изображений и сетевой поверхности.
Подобные документы
Сущность экспертных систем как самостоятельного направления в искусственном интеллекте. Основные правила их проектирования. Средства разработки экспертных систем. Понятие сигмоидального нейрона и звезд Гроссберга. Структура многослойного персептрона.
курс лекций, добавлен 21.05.2013Осцилляторные нейросетевые модели сегментации изображений и зрительного внимания. Типы нейронных сетей. Быстрые нейронные сети: проектирование, настройка, приложения. Нейроноподобные модели описания динамических процессов преобразования информации.
курс лекций, добавлен 08.02.2013Ознакомление со структурной схемой нейрона. Анализ методов отражения сути биологических нейронных систем. Исследование сравнительных характеристик нейрокомпьютеров и традиционных компьютеров. Рассмотрение формальной модели искусственного нейрона.
курсовая работа, добавлен 25.01.2015Сверточная нейронная сеть как тип искусственной нейронной сети с прямой связью. Знакомство с историей и концепцией развития сверточных нейронных сетей. Характеристика результатов программного эксперимента в виде графиков и сгенерированных изображений.
статья, добавлен 30.06.2020Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.
книга, добавлен 18.01.2011Трудности алгоритма обучения персептрона. Методика вычисления выходов слоя Кохонена до применения активационной функции. Нейрочип – программируемое устройство, которое имеет операционные узлы для выполнения операций, свойственных нейронным сетям.
курс лекций, добавлен 17.01.2022Автоматическое выявление признаков конкретных изображений из цветов пикселей и контуров изображений. Синтез и верификация модели. Спектры конкретных изображений. Выбор наиболее достоверной модели и придание ей статуса текущей. Нелокальные нейроны классов.
статья, добавлен 26.05.2017Основные направления развития систем искусственного интеллекта. Математическая модель, программное и аппаратное воплощение искусственной нейронной сети. Выявление сложных зависимостей между входными и выходными данными и выполнение их обобщения.
статья, добавлен 25.03.2019Технологические аспекты обучения нейросетевых машин. Проблема "сознание и мозг" и искусственный интеллект. Происхождение интеллекта и модели адаптивного поведения. Модель внимания и памяти, основанная на принципе доминанты. Параметрические нейронные сети.
книга, добавлен 08.02.2013- 35. Нейронные сети
Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.
реферат, добавлен 20.02.2009 Методические рекомендации по организации практической работы по реализации компьютерной модели персептрона на языке программирования Python, направленной на закрепление учебного материала по применению однослойных нейронных сетей в распознавании образов.
статья, добавлен 14.02.2022Анализ модели нейрона, обладающей возможностью запоминания значения специально вводимого параметра состояния нейрона. Механизм реализации двухуровневой схемы эволюционирования нейронных сетей. Описание предлагаемых алгоритмов их функционирования.
статья, добавлен 19.12.2017Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Алгоритм обучения нейронной сети с помощью процедуры обратного распространения. Диаграмма сигналов в сети. Программирование нейронной сети с применением объектно-ориентированного подхода. Иерархия классов библиотеки для сетей обратного распространения.
статья, добавлен 25.03.2013Искусственный интеллект и нейронные сети. Особенности использования искусственных нейронных сетей в системах управления. Системы адаптивного управления, использующие эталонную модель Ляпунова. Архитектура построения нейросетевых систем управления.
отчет по практике, добавлен 09.02.2019Основные понятия об искусственных нейронных сетях, дискретных преобразованиях Фурье и потоковых кодированиях информации. Формальная модель нейрона Мак-Каллока-Питтса и нейрона с альтернативными синапсами. Дискретное преобразование Фурье. Метод Хебба.
автореферат, добавлен 08.02.2013- 42. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.
учебное пособие, добавлен 18.01.2014Понятие и история искусственного интеллекта. Эвристическое программирование, как разработка стратегии действий по аналогии или прецедентам. Перспективные технологии: нейронные сети, эволюционные вычисления, нечеткая логика, интеллектуальная инженерия.
реферат, добавлен 23.04.2013Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.
дипломная работа, добавлен 19.11.2015Искусственные нейронные сети, основы описания многомерных тестовых данных. Построение области допустимых изменений параметров однородных групп, модели регрессии. Определение компонент дискретного конечного множества элементов. Нейронная сеть Хопфильда.
учебное пособие, добавлен 15.01.2018Понятия компьютерной графики, ее математические основы. Базовые вычислительные, растровые алгоритмы. Методы и алгоритмы трехмерной графики. Визуализация трехмерных изображений. Кривые и криволинейные поверхности. Особенности графического программирования.
учебное пособие, добавлен 08.09.2016Сборка персонального компьютера для работы с текстом и графикой среднего качества; печати изображений; сканирования печатных изображений и пленок; работа в сети интернет с вхождением в состав локальной сети с поддержкой сетевой технологии Ethernet.
контрольная работа, добавлен 07.05.2012Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009