Расчет всевозможных исходов эксперимента

Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.

Подобные документы

  • Нахождение вероятностей происхождения событий при заданных условиях. Формула полной вероятности и формула Байеса. Определение математического ожидания, дисперсии и среднеквадратического отклонения случайной величины. Нахождение плотности распределения.

    контрольная работа, добавлен 19.03.2015

  • Существенная характеристика алгебры и сигма-алгебры событий, встречающихся в теории вероятностей. Изучение косвенных методов вычисления возможностей. Свойства операций сложения и умножения явлений. Особенность изучения основных законов де Моргана.

    контрольная работа, добавлен 25.11.2015

  • Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.

    методичка, добавлен 07.10.2015

  • Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.

    контрольная работа, добавлен 19.03.2014

  • Определение зависимых и независимых событий в теории вероятности. Вероятность наступления события при условной вероятности. Рассмотрение явления вероятности суммы событий. Изучение формул вычисления вероятности произведения тех или иных событий.

    презентация, добавлен 26.07.2015

  • Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.

    учебное пособие, добавлен 12.03.2015

  • Случайные события и вероятность. Теорема сложения вероятностей для несовместных событий. Формула Байеса. Основные законы распределения дискретных случайных величин. Формула Бернулли. Интегральная теорема Лапласа. Математическое ожидание, дисперсия.

    курс лекций, добавлен 08.12.2015

  • Понятие о теории вероятностей и математической статистике как о науках. Случайный эксперимент и его элементарные исходы. Классификация случайных событий и действия над ними. Основные теоремы теории вероятностей. Первичная обработка статистических данных.

    презентация, добавлен 24.06.2014

  • Характеристика особенностей теоремы Муавра-Лапласа - одной из предельных теорем теории вероятностей. Сущность первообразной функции Гаусса. Формула Ньютона-Лейбница. Стандартный интеграл Лапласа. Теорема сложения вероятности для несовместных событий.

    реферат, добавлен 02.01.2013

  • Особенность применения геометрического определения вероятности. Сущность появления одного из двух несовместимых данных. Характеристика теоремы о сложении возможностей совместных и несовместных событий. Главный анализ изучения умножения случайностей.

    практическая работа, добавлен 27.11.2015

  • Типовые вероятностные задачи энергетического характера. Определение вероятностей случайных событий. Основные теоремы теории вероятностей. Законы распределения случайных величин, числовые характеристики их функций. Случайные явления, события и величины.

    учебное пособие, добавлен 15.06.2015

  • Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.

    реферат, добавлен 17.03.2015

  • Определение вероятности выбора детали без дефектов из выборки, обработанной на одном определенном станке. Расчет числа взошедших семян из выборки методами теории вероятности. Расчет разности случайных величин, ее математического ожидания и дисперсии.

    контрольная работа, добавлен 06.06.2014

  • Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.

    задача, добавлен 20.11.2015

  • Введение понятия бинарного события. Рассмотрение событий, задаваемых булевыми функциями. Доказывание теоремы о вероятности события. Получение расчетных формул для условных вероятностей и формул Байеса, построение задач на применение полученных формул.

    статья, добавлен 12.08.2020

  • История развития теории вероятности как науки. Задачи вероятностного характера в различных азартных играх. Изучение теории вероятностей в работах Паскаля, Ферма, Гюйгенса. Теория ошибок измерения и парадоксы Бертрана. Российская школа теории вероятности.

    реферат, добавлен 08.06.2017

  • Определение вероятности попадания двумя стрелками в мишень. Расчет вероятности безотказной работы устройства. Рассмотрение биномиального закона распределения дискретной случайной величины. Определение функции распределения и построение ее графика.

    контрольная работа, добавлен 31.10.2017

  • Методика определения и оценки вероятности попадания студенту "счастливого" билета на экзамене. Анализ вероятности того, что среди 12 новорожденных будет 10 девочек. Разработка закона распределения случайной величины и вычисление математического ожидания.

    контрольная работа, добавлен 19.03.2015

  • Формулы схемы Пуассона для нахождения вероятности события. Закон распределения случайной дискретной величины, построение функции распределения. Математическое ожидание, среднее квадратическое отклонение. Проверка гипотезы критерием хи-квадрата Пирсона.

    контрольная работа, добавлен 02.03.2017

  • Расчет числа объектов в выборке, несмещенного среднего значения и "исправленного" среднего квадратического отклонения. Поиск доверительных интервалов для оценки неизвестного математического ожидания. Оценка объема выборки. Поиск вероятности выздоровления.

    контрольная работа, добавлен 31.01.2016

  • Изучение комбинаторики, основных формул теории вероятностей, геометрической вероятности, теорема Бернулли, Муавра-Лапласа, дискретных случайных величин и закона их распределения, а также определение коэффициента корреляции с помощью решения задач.

    задача, добавлен 24.02.2014

  • Положения и теоремы теории вероятности в теории надежности. Теоремы сложения и умножения вероятностей. Теорема гипотез и формула Бейеса. Обработка статистических данных про надежность элементов. Критерий согласия при оценке статистических гипотез.

    контрольная работа, добавлен 03.11.2012

  • Определение числа исходов, благоприятствующих появлению заданного события. Проведение независимых испытаний. Применение теоремы Пуассона. Нахождение математического ожидания, дисперсии, среднего квадратического отклонения и функции распределения.

    контрольная работа, добавлен 20.12.2015

  • Общее понятие условной вероятности. Доказательство теоремы: вероятность произведения двух событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, вычисленную при условии, что первое событие имело место.

    презентация, добавлен 01.11.2013

  • Общее число возможных элементарных исходов испытания, вероятность исходов, благоприятствующих событию. Поиск искомой вероятности через противоположное событие. Особенности функции распределения как универсальной характеристики случайной величины.

    контрольная работа, добавлен 10.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.