Расчет всевозможных исходов эксперимента
Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
Подобные документы
Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.
курс лекций, добавлен 23.04.2016- 102. Основы комбинаторики
Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.
шпаргалка, добавлен 06.11.2009 Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.
реферат, добавлен 12.12.2013Статистическое определение вероятности случайного события и меры статистической закономерности появления события. Применение графической диаграммы Эйлера из теории множеств. Определение свойства относительной частоты и пространства элементарных событий.
лекция, добавлен 26.09.2017Определение числа различных комбинаций элементов, составленных из различных групп. Формула полной вероятности. Построение столбцовой диаграммы, соответствующей ряду распределения. График эмпирической функции. Расчет математического ожидания и дисперсии.
контрольная работа, добавлен 18.05.2013- 106. Теория вероятностей
Исторические сведения о возникновении и развитии теории вероятностей. Определение случайного события и условные вероятности. Определение случайной величины и ее числовые характеристики, понятие математического ожидания. Примеры дискретных распределений.
курс лекций, добавлен 08.04.2015 Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.
контрольная работа, добавлен 25.01.2015Использование формулы полной вероятности при выборе шаров. Определение благоприятного числа случаев. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Построение закона распределения случайной величины и графиков функций.
контрольная работа, добавлен 09.10.2014- 109. Теория вероятностей
Определение закона распределения случайной величины. Нахождение плотности распределения, математического ожидания, дисперсии и среднего квадратического отклонения. Построение графиков дифференциальной и интегральной функций. Анализ вероятности события.
контрольная работа, добавлен 14.12.2015 Анализ средних статистических данных, полученных путем простых и сложных расчетов. Расчет вероятности остатка не распроданных микроволновых печей одной марки. Вычисление вероятной доли определенных изделий из общей массы продукции. Теорема Муавра-Лапласа.
задача, добавлен 09.10.2012Теория вероятностей и основные теоремы. Дискретная и непрерывная случайная величина. Статистическое распределение выборки, точечные и интервальные оценки. Доверительный интервал и критерий Пирсона. Элементы теории корреляции и формулы полной вероятности.
контрольная работа, добавлен 08.12.2011- 112. Теория вероятностей
Рассмотрение элементов теории вероятностей и пространства элементарных частиц. Изучение закономерностей проведения массовых однородных испытаний. Рассмотрение условий классической схемы испытаний. Определение вероятности произведения двух событий.
контрольная работа, добавлен 28.03.2022 Проблема вычисления вероятности случайного события и его роль при проектировании закономерности производственных процессов и при поиске эффективных алгоритмов управления ими. Особенности аналитического вывода формулы оценки вероятности случайного события.
статья, добавлен 30.01.2021- 114. Теория вероятностей
Формирование треугольника из трех произвольных отрезков. Расчет вероятности события исходя из оценки количества благоприятных случаев. Вычисление по формулам математического ожидания, дисперсии и среднеквадратического отклонения случайной величины.
контрольная работа, добавлен 15.11.2014 Создание гистограммы вероятностей распределения Пуассона, графика функции и плотности распределения с определенным параметром. Нахождение выборочного квадратического отклонения. Построение доверительного интервала, покрывающего математическое ожидание.
творческая работа, добавлен 12.01.2018Определение суммы вероятностей всех элементарных событий. Формула нахождения вероятности наступления определенного количества успехов в серии из множества испытаний Бернулли. Несовместные - исходы, которые не наступают при проведении одного опыта.
презентация, добавлен 09.11.2015Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.
задача, добавлен 24.08.2015Рассмотрение примеров расчета вероятности заданного события. Определение вероятности попадания в мишень, выбора обуви первого и второго сорта, вычисление последней цифры телефона. Изучение закона распределения случайных величин рядом распределения.
контрольная работа, добавлен 07.01.2014Исследование конечной базируемости многообразий коммутативных алгебр Лейбница-Пуассона полиномиального роста в случае основного поля нулевой характеристики, их ограничение полиномом. Исследование частных случаев задачи, доказательство основных теорем.
статья, добавлен 31.05.2013Схема Бернулли, её определение и задачи, которые решаются по ней. Важное условие, без которого схема Бернулли теряет смысл. Возможные исходы при независимых испытаниях одинаковых вероятностей. Теорема и формула Бернулли, определение вероятностей событий.
контрольная работа, добавлен 04.01.2015Основные подходы к определению вероятности события и формулы комбинаторики. Дискретное распределение вероятности и понятие математического ожидания. Дисперсия и стандартное отклонение. Биноминальный закон распределения. Непрерывные случайные величины.
учебное пособие, добавлен 25.01.2012- 122. Теория вероятности
Анализ вероятности события. Расчет среднего квадратического отклонения, выборочной дисперсии статистического распределения выборки. Оценка дисперсии, корреляции согласно корреляционной таблице. Гипотеза о законе распределения по критерию согласия Пирсона.
контрольная работа, добавлен 08.12.2015 Вычисление вероятности с помощью теоремы Пуассона, функции распределения и неравенства Маркова. Нахождение математического ожидания и дисперсии, коэффициента корреляции, среднего квадратического отклонения и функции распределения случайной величины.
контрольная работа, добавлен 27.04.2015- 124. Теория вероятностей
Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).
курс лекций, добавлен 27.12.2015 Определение вероятности, следствие из принципа практической невозможности маловероятных событий. Теорема Муавра–Лапласа. Закон распределения случайной величины. Дискретная случайная величина. Математическое ожидание дискретной случайной величины.
контрольная работа, добавлен 12.11.2015