Нейронная сеть прогнозирования курса рубля (примеры работы программы)
Нейронные сети как распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Общая характеристика нейронной сети прогнозирования курса рубля, знакомство с основными особенностями.
Подобные документы
Применение нечеткой нейронной сети на основе алгоритма Сугено путем аппроксимации управляющего напряжения, как функции координат системы, для реализации терминального управления. Описание базы правил и функции принадлежности, результаты применения сети.
статья, добавлен 21.02.2013IP-адрес как уникальный идентификатор устройства, подключенного к локальной сети или сети Интернет: анализ способов получения, знакомство с основными типами. Общая характеристика специальных IP-адресов. Рассмотрение функций и особенностей маршрутизаторов.
реферат, добавлен 26.02.2020- 53. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024Связь результатов, полученных при помощи обучения нейро-нечеткой сети ANFIS и выбора различных функций принадлежности. Пятислойная нейронная сеть прямого распространения сигнала. Нейронная сеть для представления нечеткой модели. Сигмоидная функция.
статья, добавлен 23.12.2020Общее описание нейронных сетей, однослойные и многослойные сети. Описание программных моделей и алгоритмов их обучения. Проблема функции "исключающее или". Исследование представляемости однослойной и двухслойной нейронной сети, релаксация стимула.
курсовая работа, добавлен 26.06.2011Сущность понятия "многоячейковая сеть". Общая характеристика сенсорной сети ZigBee: рассмотрение особенностей, анализ возможностей. Знакомство с основными способами и эффективными методами повышения эффективности работы беспроводных сенсорных сетей.
статья, добавлен 27.02.2019Топологии нейронной сети: биологический нейрон, функции активации, закономерности обучения. Существующие архитектуры и их сравнительная характеристика. Многослойный перцептрон нейронной сети, особенности ее использования для динамических систем.
отчет по практике, добавлен 18.02.2019Изучение принципа работы нейронной сети для распознавания образов на примере шумерского алфавита. Рассмотрение нейронной сети, которая должна точно распознавать идеальные векторы входа и с максимальной точностью воспроизводить зашумленные векторы.
статья, добавлен 24.02.2019Основные виды глобальных компьютерных сетей: централизованные и распределенные. Основные черты сети Интернет. Требования адреса источника в информационной сети. Базовые пользовательские технологии работы в Интернете. Формы ведения электронного бизнеса.
реферат, добавлен 07.11.2017- 61. Нейронные сети
Модель нелокального нейрона, являющаяся обобщением классической модели Дж. Маккалоки и У. Питтса. Когнитивная аналитическая система "Эйдос". Искусственные нейронные сети, проблемы и перспективы. Моделирование иерархических структур обработки информации.
научная работа, добавлен 26.08.2010 Сущность и устройство искусственных нейтронных сетей, их общая характеристика, назначение, принцип работы и составляющие базовые нелинейные элементы. Решение систем обыкновенных дифференциальных уравнений в нейросетевом базисе при помощи системы Simulink.
контрольная работа, добавлен 12.12.2012- 63. Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
статья, добавлен 19.06.2018 На базе информации о векторе состояния нелинейной модели и его производной формирование статической нейронной сети, аппроксимирующей правую часть уравнений динамики. Линеаризация сети, в результате которой определение коэффициентов линейной модели судна.
статья, добавлен 28.10.2018Анализ алгоритма долгосрочного прогнозирования загрузки ЦП компьютеров, входящих в корпоративные компьютерные сети. Паттерны загрузки типового домашнего компьютера. Характеристика особенностей программы-агента, устанавливаемой на вычислительные элементы.
статья, добавлен 15.08.2020Методика выбора нейронной сети для решения задач регрессионного анализа многомерных данных. Оценка эффективности выбранной нейросети при решении задачи аппроксимации зашумленных данных. Результаты моделирования прочностных характеристик металла шва.
статья, добавлен 27.05.2018Анализ вопросов использования нейронной сети для распознавания фигур технического анализа. Сравнение способов формирования входных образов. Конгломерат нейронных сетей для распознавания фигур технического анализа. Трактовка выходов нейронной сети.
статья, добавлен 27.04.2017Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.
презентация, добавлен 16.10.2013Разработка алгоритма распознавания чисел с эмуляцией нейронной сети на основе использования стандартных функций табличного процессора MS Excel. Распознавание образов знаков десятичной системы, построенной с помощью горизонтальных и вертикальных штрихов.
статья, добавлен 29.01.2020Исследование модели доменной нейронной сети. Анализ ее распознающих свойств, оценка помехоустойчивости, емкости памяти и скорости работы. Сравнительный анализ оптимизационных свойств предложенной модели. Критерий останова процесса случайного поиска.
автореферат, добавлен 27.09.2018Предложение по решению задачи индексирования больших массивов информации. Особенности применения нейронной сети для точного ранжирования документов, имеющих шанс оказаться на высоких местах в выдаче по результатам более грубой оценки их релевантности.
статья, добавлен 26.04.2017Представление знаний для решения интеллектуальных проблем. Принцип выбора потенциального дерева решения. Искусственные нейронные сети. Принцип работы искусственного нейрона, его формальная модель. Применение нейронных сетей, классификация нейронов.
учебное пособие, добавлен 26.08.2015Особенность подготовки данных для обучения сети. Главный анализ формирования обучающих массивов в задаче. Вычисление суммы квадратичных отклонений выходов паутины от эталонов. Основная характеристика проведения результатов регрессионного анализа.
лабораторная работа, добавлен 14.01.2015Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.
книга, добавлен 18.01.2011Использование нейронные сети для прогнозирования концентрации отдельных веществ и для установления экологической обстановки региона как по отдельным выбросам, так и по их совокупности. Современные методы обработки разнотипных экспериментальных данных.
статья, добавлен 25.08.2020