Подходы к интеграции методов машинного обучения и технологии блокчейн
Возможности применения технологии блокчейн для повышения эффективности работы методов машинного обучения. Тенденции практического применения нейронных сетей и технологии блокчейн. Формирование обучающих выборок, сбор данных распределенными системами.
Подобные документы
Визначення ролі блокчейн технологій у забезпеченні кібербезпеки їх здатністю до створення безпечних записів даних. Використання децентралізованої архітектури блокчейну для уникнення централізованих точок вразливості, підвищуючи стійкість до кібератак.
статья, добавлен 23.12.2024Проблема выбора оптимального метода подбора персонифицированного лечения пациента. Исследование метода взвешенных исходов для анализа выживаемости на выборке пациентов с детским лимфобластным лейкозом. Применение данных для машинного обучения нейросети.
дипломная работа, добавлен 27.08.2016DoS-атаки представляют собой серьезную угрозу для онлайн-сервисов, сетей и бизнеса, способствуя значительным сбоям в работе, финансовым потерям и ущербу. Рассматриваются методы машинного и глубокого обучения для обнаружения и предотвращения D DoS-атак.
статья, добавлен 17.12.2024Big Data как технологии обработки больших объемов данных. Облачные технологии. Сущность и виды криптовалют. Искусственный интеллект – наука и технология создания интеллектуальных машин. Уровень развития информационных технологий в Российской Федерации.
контрольная работа, добавлен 25.02.2019Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.
дипломная работа, добавлен 30.07.2016Возможности применения информационных технологий в процессе обучения различным видам переводческой деятельности. Разновидности способов перевода с помощью машин и человека. Технико-экономические условия оснащения современных компьютеров программами.
реферат, добавлен 04.05.2015Описание анализа систем распознавания эмоций с применением методов машинного обучения, находящихся в открытом доступе, в рамках курсового проекта по дисциплине Обучающие Технические Системы "Machine Learning". Neurobotics EmoDetect. Cognitive Emotion.
статья, добавлен 14.03.2019Рассматриваются наиболее актуальные патентные решения в области интеграции машинного обучения в банковские системы противодействия мошенничеству (антифрод-системы). Приведены патентные решения российских, американских, китайских учёных и разработчиков.
статья, добавлен 01.04.2022Исследование особенностей применения методов машинного обучения для выявления преступников по фотографиям. Определение необходимости обучения цифровой грамотности. Рассмотрение и характеристика основных причин масса мифов вокруг software engineering.
доклад, добавлен 09.10.2022Використання розподілених систем з метою забезпечення децентралізованого та безпечного онлайн-голосування. Аналіз переваг системи блокчейн перед централізованою платформою, вразливою до хакерських атак, її застосування у сфері державного управління.
статья, добавлен 05.05.2022Анализ влияния облачных технологий на развитие информатики, изучение последних тенденций и инноваций в этой области. Демонстрация практического применения облачных технологий на конкретных примерах. Развитие искусственного интеллекта и машинного обучения.
статья, добавлен 13.12.2024Сбор и агрегация исторических данных о регулярных рейсах авиакомпаний. Особенность создания модели машинного обучения для предсказания вероятности отмены маршрута. Характеристика формирования ИТ-сервиса для предоставления доступа к предиктивной модели.
дипломная работа, добавлен 09.08.2018Изучение алгоритмов машинного обучения, направленных на выявление закономерностей в графических данных. Применение сверточных нейронных сетей при работе со спутниковыми изображениями. Создание интерактивной карты для визуализации распознанных объектов.
дипломная работа, добавлен 02.09.2018Характеристика обучающих выборок, которые используются для обучения искусственных нейронных сетей. Сравнительный анализ значений медианы, полученных при проведении теста Краскела–Уоллиса для определения результатов обучения программных приложений.
статья, добавлен 28.11.2016Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.
статья, добавлен 02.04.2019Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Обучение адаптивных нейро-нечетких сетей (ANFIS) для решения задач классификации деталей. Возможности ANFIS для решения задачи классификации втулок с помощью системы нечеткого вывода. Зависимость точности работы системы от количества обучающих выборок.
статья, добавлен 08.05.2018Применение информационных технологий в базах данных, их роль в обеспечении эффективного управления и хранения данных, интеграция с другими информационными системами. Анализ применения информационных технологий в базах данных, их значимость для бизнеса.
статья, добавлен 11.10.2024Исследование роли и механизма применения информационно-коммуникационных технологий в сфере общественных и корпоративных финансов. Конкретизация понятия "блокчейн", его применение. Основополагающие принципы в информационно-коммуникационных технологиях.
статья, добавлен 25.09.2018- 70. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.
дипломная работа, добавлен 26.05.2018Разработка и анализ работы алгоритмов для анализа тональности агрессивных комментариев, автоматического определения их эмоционального окраса. Реализация классифицирующих моделей машинного обучения, оценка их качества и сравнение их эффективности.
дипломная работа, добавлен 10.12.2019Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Технологии адаптивной гипермедиа. Вдохновленные сетевой обстановкой технологии в сетевом обучении. Технологии интеллектуальных обучающих систем в сетевом обучении. Адаптивные и интеллектуальные технологии в широких масштабах сетевого образования.
реферат, добавлен 22.06.2010Алгоритмы для решения задачи бинарной классификации. Подготовка данных для создания модели. Разработка предиктивной модели для прогнозирования возможности продажи дополнительных услуг телекоммуникационного оператора с целью решения маркетинговых задач.
дипломная работа, добавлен 27.08.2018