Подходы к интеграции методов машинного обучения и технологии блокчейн
Возможности применения технологии блокчейн для повышения эффективности работы методов машинного обучения. Тенденции практического применения нейронных сетей и технологии блокчейн. Формирование обучающих выборок, сбор данных распределенными системами.
Подобные документы
Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Технологии адаптивной гипермедиа. Вдохновленные сетевой обстановкой технологии в сетевом обучении. Технологии интеллектуальных обучающих систем в сетевом обучении. Адаптивные и интеллектуальные технологии в широких масштабах сетевого образования.
реферат, добавлен 22.06.2010Алгоритмы для решения задачи бинарной классификации. Подготовка данных для создания модели. Разработка предиктивной модели для прогнозирования возможности продажи дополнительных услуг телекоммуникационного оператора с целью решения маркетинговых задач.
дипломная работа, добавлен 27.08.2018Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013- 80. Прогнозирование котировок финансовых инструментов с помощью нейронных сетей и машинного обучения
Анализ существующих решений в прогнозировании котировок. Программные комплексы для автоматической торговли на основе нейронных сетей. Составление плана проектирования программного комплекса. Разработка резюме проектирования остальных обработчиков.
контрольная работа, добавлен 30.08.2016 Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.
дипломная работа, добавлен 14.12.2019Рассмотрение машинного обучения для классификации комментариев в рамках курсового проекта по дисциплине "Machine Learning. Обучающиеся технические системы". Автоматическое определение эмоциональной окраски (позитивный, негативный) текстовых данных.
статья, добавлен 19.02.2019Основы машинного обучения на компьютерных программах и алгоритмах, которые самостоятельно обучаются адаптироваться и расти при подаче новых данных. Вкладывание в отдельную программу/компьютер алгоритмов поиска решений, использующих данные статистики.
статья, добавлен 23.02.2025Возможности использования методов машинного обучения для анализа реальных данных по вибрации ключевых узлов центробежного компрессора. Дерево решения для массива данных, полученных в одном из нефтеперерабатывающих заводов. Критерии оценки отказа
статья, добавлен 09.09.2024Сравнительные характеристики (скорость передачи/дальность) для различных протоколов беспроводной передачи данных. Преимущества технологии ZigBee, недостатки и возможные угрозы в работе сетей WSN. Суть концепции цифровых или интеллектуальных месторождений.
статья, добавлен 23.05.2018Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Предсказание трехмерной структуры белка. Предсказание матрицы контактов белка с помощью информации об ограничениях, содержащейся в матрице контактов. Применение моделей машинного обучения XGBoost, CatBoost, Logistic Regression, CNN, ResNet, BiLSTM, LSTM.
дипломная работа, добавлен 25.08.2020Особенности технологии управления голосом, тенденции ее развития и сферы применения. Основные принципы работы и главные составляющие речевых систем. Технологии для автоматизации различных производственных процессов, основанные на речевых командах.
статья, добавлен 18.08.2018Способ по предсказанию успешности реакции с помощью методов машинного обучения. Модели с использованием методов глубокого обучения, решающие задачи генерации потенциально неуспешных реакций и классификации реакций на успешно проходящие и некорректные.
дипломная работа, добавлен 24.10.2020Ускорение обработки огромных информационных массивов как одна из основных целей методики обнаружения вредоносного трафика с использованием анализа данных. Особенности настройки гиперпараметров алгоритма, который реализует метод машинного обучения.
статья, добавлен 18.01.2021Исследование выделения объектов интереса на изображении на основе сверточных нейронных сетей. Анализ возможностей их применения для поиска объекта на изображении. Алгоритм обучения нейронной сети. Возможность обучения за счет "предсказания" границ.
статья, добавлен 16.02.2025Прогресс и проблемы нейронного машинного перевода с казахского на английский язык, охватывающие множество аспектов NMT, включая различные типы архитектуры, процедуры обучения, формирование корпусов, методы подготовки данных и показатели оценки.
статья, добавлен 13.12.2024Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.
статья, добавлен 29.07.2018Сравнительный анализ публикаций с 2016 по 2020 год, связанных с построением средств обнаружения вредоносного программного обеспечения на базе операционной системы Android. Оценка использования методов динамического анализа классификатором DL-Droid.
статья, добавлен 16.05.2022Формирование аналитических данных посредством выполнения операции очищения данных локальных баз организации, применения статистических методов и других сложных алгоритмов. Рассмотрение офисных приложений и систем интеллектуального анализа данных.
реферат, добавлен 11.06.2015Вивчення сучасних веб-технологій, з'ясування тенденцій їх розвитку, методів та галузей застосування. Аналіз патентної активності у сфері веб-технологій. Розгляд технологій штучного інтелекту, Блокчейн, прогресивних веб-додатків і адаптивності веб-сайтів.
реферат, добавлен 26.09.2019Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Важность применения моделей, основанных на применении нейросетевых технологий как инструмента прогнозирования курсовой стоимости ценных бумаг. Потенциальные области применения искусственных нейронных сетей. Некоторые типовые задачи, решаемые с их помощью.
статья, добавлен 01.09.2018История появления мультимедиа технологии. Описание и основные возможности. Основные носители мультимедийных продуктов. Цели применения продуктов, созданных в мультимедиа. Типы данных мультимедиа – информации и аппаратные средства для их обработки.
реферат, добавлен 07.11.2014Применение искусственных нейронных сетей в задаче прогнозирования оставшегося времени безаварийной работы. Предварительная обработка телеметрических данных. Использование аппроксимации обобщенной функции Веибулла. Уменьшение влияния шумовых факторов.
статья, добавлен 29.06.2017