Аппроксимация функций. Метод наименьших квадратов
Построение точечной диаграммы рассеяния. Анализ системы линейных уравнений. Вычисление средней ошибки аппроксимации. Оценка гипотезы о линейной корреляции. Составление квадратической, гиперболической, экспоненциальной моделей, связей между признаками.
Подобные документы
Примеры расчета параметров экономической модели. Анализ уравнений линейной, гиперболической парной регрессии. Оценка тесноты связи и значимости коэффициентов регрессий, определение статистической надежности результатов регрессионного моделирования.
контрольная работа, добавлен 22.11.2010Построение математической модели системы на основе экспериментально полученных в процессе её функционирования входных и выходных сигналов. Оценки по критериям наименьших квадратов, наименьших взвешенных квадратов, максимального правдоподобия и риска.
лабораторная работа, добавлен 16.12.2013Расположение территории Краснодарского края по возрастанию фактора X и формулирование рабочей гипотезы о возможной связи X и Y. Построение поля корреляции и формулировка гипотезы о форме и направлении связи. Расчет линии регрессии и ошибки аппроксимации.
контрольная работа, добавлен 17.04.2012Параметры линейной, степенной, показательной функций и равносторонней гиперболы. Оценка каждой модели через среднюю ошибку аппроксимации и F-критерий Фишера. Линейный коэффициент парной корреляции и средняя ошибка аппроксимации, параметры регрессии.
контрольная работа, добавлен 05.10.2011Базовый метод регрессионного анализа для оценки неизвестных параметров моделей по выборочным данным: история, свойства оценок. Парная линейная регрессия; взвешенный метод наименьших квадратов; авторегрессионное преобразование. Применение МНК в экономике.
реферат, добавлен 10.10.2012Построение линейной модели, параметры которой можно оценить методом наименьших квадратов. Выбор показателя корреляции. Составление таблицы дисперсионного анализа для расчета значения критерия Фишера. Расчет частных и парных коэффициентов эластичности.
контрольная работа, добавлен 15.12.2012Идентификация парной линейной регрессионной зависимости между ВВП и капиталом. Идентификация линейных трендовых моделей ВВП, капитала и числа занятых, прогноз по этим моделям. Эконометрическая модель с использованием метода наименьших квадратов.
контрольная работа, добавлен 01.11.2012Эконометрический метод, понятие эконометрических уравнений, их применение. Система независимых уравнений, пример модели авторегрессии. Проблема идентифицируемости, система линейных одновременных эконометрических уравнений, методы наименьших квадратов.
контрольная работа, добавлен 19.01.2016Сущность метода наименьших квадратов (МНК). Функциональная, стохастическая и корреляционная связи. Инструментарий МНК: процедуры проверки гипотезы о существовании связи, подбора лучшей функциональной модели, определения параметров уравнения регрессии.
лекция, добавлен 29.09.2013Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.
задача, добавлен 20.06.2016Анализ зависимости объема потребления домохозяйства от располагаемого дохода. Построение регрессионной модели. Оценка качества уравнения регрессии. Расчет коэффициента эластичности, ошибок аппроксимации и регрессии, значения коэффициента детерминации.
контрольная работа, добавлен 07.03.2016Главная особенность двухшагового и косвенного методов наименьших квадратов в моделировании. Анализ получения состоятельных оценок и параметров моделей из линейных одновременных уравнений. Основная характеристика проблемы идентификации уравновешивания.
презентация, добавлен 18.01.2015Построение поля корреляции и гипотеза о форме связи. Уравнение линейной регрессии и экономическая интерпретация. Параметры уравнений степенной и гиперболической регрессий. Расчет индекса корреляции и детерминации. Модель регрессии и F-критерий Фишера.
контрольная работа, добавлен 18.02.2016Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.
курсовая работа, добавлен 17.04.2010Построение адаптивной мультипликативной модели Хольта-Уинтерса. Оценка точности результатов с использованием средней относительной ошибки аппроксимации. Анализ адекватности модели на основе исследования случайности остаточной компоненты по критерию пиков.
контрольная работа, добавлен 27.01.2014Построение доверительного интервала для коэффициента регрессии модели. Оценка качества модели, ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности спроса на товар в зависимости от его цены, коэффициент эластичности.
контрольная работа, добавлен 31.03.2015Нахождение метода наименьших квадратов уравнения линейной регрессии, где признак: среднесписочное число работников магазина и сумма розничного товарооборота. Определение параметров зависимости. Применение коэффициента корреляции, его вычисление.
контрольная работа, добавлен 24.11.2014Расчет линейного коэффициента парной корреляции, средней ошибки аппроксимации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации с помощью критерия Фишера. Построение систем эконометрических уравнений, их приведенная форма.
контрольная работа, добавлен 21.03.2013Определение линейного коэффициента парной корреляции, уравнение линейной регрессии. Построение степенной модели путем логарифмирования частей уравнения. Построение гиперболической модели, коэффициент детерминации и средняя относительная ошибка.
контрольная работа, добавлен 10.06.2009Вычисление модельных значений уровней ряда по уравнению тренда. Построение точечного и интервального прогнозов трендовой модели. Расчёт параметров и оценка моделей степенной, показательной, полулогарифмической, обратной и гиперболической функций.
контрольная работа, добавлен 13.05.2014Статистические и математические функции Excel: модели линейной регрессии с двумя коэффициентами, полиномиальная регрессия. Построение экспоненциальной линии тренда путем расчета точек методом наименьших квадратов. Дисконтированный период окупаемости.
контрольная работа, добавлен 10.11.2012Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.
лабораторная работа, добавлен 05.09.2013Построение поля корреляции, расчет параметров уравнения линейной регрессии, оценка тесноты связи. Сравнительная оценка силы связи фактора с результатом. Анализ линейных коэффициентов парной и частной корреляции. Уравнение множественной регрессии.
контрольная работа, добавлен 30.03.2010Построение поля корелляции модели динамики роста объема продаж. Оценка значимости коэффициентов регрессии, корелляции, детерминации и эластичности. Определение средней относительной ошибки аппроксимации. Построение графика функции в MS Exel и его анализ.
контрольная работа, добавлен 09.08.2010Парная линейная регрессия. Вычисление неизвестных параметров с помощью метода наименьших квадратов. Коэффициенты корреляции, эластичности и аппроксимации. Создание нелинейной регрессии степенного и показательного вида. Уравнение равносторонней гиперболы.
контрольная работа, добавлен 27.06.2012