Аппроксимация функций. Метод наименьших квадратов

Построение точечной диаграммы рассеяния. Анализ системы линейных уравнений. Вычисление средней ошибки аппроксимации. Оценка гипотезы о линейной корреляции. Составление квадратической, гиперболической, экспоненциальной моделей, связей между признаками.

Подобные документы

  • Расчет линейного коэффициента парной корреляции и оценка тесноты связи. Особенность статистической значимости параметров регрессии и корреляционной системы. Подсчет ошибки прогноза и его доверительного интервала. Вычисление коэффициента детерминации.

    контрольная работа, добавлен 28.08.2017

  • Парная регрессия и корреляция. Типы кривых, используемые при количественной оценке связей между двумя переменными. Построенные модели по индексу детерминации и средней ошибке аппроксимации. Отбор факторов при построении уравнения множественной регрессии.

    курс лекций, добавлен 10.04.2010

  • Расчет среднего отклонения и доверительного интервала для генерального среднего выручки. Нахождение методом наименьших квадратов уравнения прямой линии регрессии, построение графика корреляционных зависимостей. Оценка адекватности регрессионных моделей.

    контрольная работа, добавлен 26.02.2010

  • Производственная функция Кобба-Дугласа. Линейный регрессионный анализ. Матричный формализм и оценка параметров производственных функций. Численные методы аппроксимации. Определение линейной и функциональной зависимости. Матричная форма записи уравнений.

    реферат, добавлен 06.08.2013

  • Построение однофакторного регрессионного уравнения, отражающего зависимость двух переменных. Влияние безработицы на уровень зарплаты в стране. Расчет параметров уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной регрессий.

    лабораторная работа, добавлен 28.06.2017

  • Анализ графиков исходных данных и корреляционной связи. Парный коэффициент корреляции между всеми парами факторов. Регрессионные модели, значимость параметров уравнений, коэффициенты детерминации. Устранение мультиколлинеарности, регрессионные уравнения.

    контрольная работа, добавлен 30.10.2014

  • Методика построения точечной диаграммы и линии регрессии в программном приложении Microsoft Excel. Определение стандартного отклонения выборки и коэффициента корреляции. Порядок выполнения проверки соответствия остатков нормальному распределению.

    лабораторная работа, добавлен 02.01.2022

  • Построение оценок в линейных моделях и изучение их свойств. Сравнение и применение точного, приближенного и бутстраповского подходов к инференции. Рассмотрение линейной и нелинейной регрессии среднего и линейных моделей с инструментальными переменными.

    курс лекций, добавлен 28.12.2013

  • Нелинейные соотношения между экономическими явлениями, их выражение с помощью нелинейных функций. Характеристика двух классов нелинейных регрессий. Сравнительный анализ моделей, построенных по индексу детерминации и средней ошибке аппроксимации.

    лекция, добавлен 25.04.2015

  • Уравнение парной регрессии, её параметры: коэффициенты корреляции и эластичности, их значимость и доверительный интервал, ошибка аппроксимации, коэффициент детерминации. Матрица парных коэффициентов корреляции. Анализ параметров уравнения регрессии.

    контрольная работа, добавлен 07.07.2015

  • Пример построения однофакторных и многофакторных моделей. Анализ значимости коэффициентов регрессии с использованием критериев Стьюдента и модели с применением критерия Фишера. Расчет ошибки аппроксимации и прогнозы социально-экономических показателей.

    курсовая работа, добавлен 16.11.2009

  • Оценка качества подгонки (значимости) линии регрессии к имеющимся данным. Средняя ошибка аппроксимации, анализ дисперсии, разложение отклонения от среднего. Свойства коэффициента детерминации, число степеней свободы. Дисперсионный анализ результатов.

    презентация, добавлен 12.07.2015

  • Изучение параметров уравнения линейной регрессии. Расчет остаточной суммы квадратов. Проверка выполнения предпосылок МНК. Вычисление дисперсий случайных величин. Свойства коэффициентов регрессии. Критерий поворотных точек. Парный коэффициент корреляции.

    контрольная работа, добавлен 04.02.2014

  • Метод наименьших квадратов при оценке параметров линейной модели. Показатели разброса случайной величины, коэффициент детерминации, функция эластичности, гетероскедастичность и автокоррелированность ошибок в Гауссовском распределении и статистике Фишера.

    контрольная работа, добавлен 28.07.2011

  • Поквартальные данные о кредитах от коммерческого банка на жилищное строительство. Построение адаптивной мультипликативной модели Хольта-Уинтерса с учетом сезонного фактора. Оценка точности построенной модели с использованием средней ошибки аппроксимации.

    контрольная работа, добавлен 30.05.2014

  • Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.

    курсовая работа, добавлен 14.12.2015

  • Адаптивная мультипликативная модель Хольта-Уинтерса и сезонность. Точность модели с использованием средней относительной ошибки аппроксимации. Случайность остаточной компоненты, интервал сглаживания и скользящая средняя. Дисконт и процентная ставка.

    контрольная работа, добавлен 23.12.2012

  • Методы расчета линейного коэффициента парной корреляции. Оценка статистической значимости коэффициентов множественного уравнения регрессии с помощью критерия Стьюдента. Проверка системы эконометрических уравнений на необходимое условие идентификации.

    контрольная работа, добавлен 12.12.2015

  • Изучение характеристик модели (коэффициента корреляции, коэффициента детерминации, остатков, значимости F-критерия Фишера). Рассмотрение экономической интерпретации коэффициентов модели. Использование расчета показателя относительной ошибки аппроксимации.

    задача, добавлен 15.04.2014

  • Расчет и сущность параметров уравнений линейной и нелинейной парной регрессии. Связь доходов от международных перевозок и длины дороги с помощью показателей корреляции и детерминации. Оценка аппроксимации качества уравнения регрессии доходов от перевозок.

    курсовая работа, добавлен 09.06.2015

  • Прогнозирование численности населения с помощью методов скользящей средней, наименьших квадратов и экспоненциального сглаживания. Построение графика потребления электроэнергии, определения сезонных колебаний и поквартальный прогноз объема потребления.

    задача, добавлен 30.12.2010

  • Поведение и значение различных экономических показателей. Зависимость спроса или потребления от уровня дохода и цен на товары. Парная линейная регрессия. Взаимосвязи экономических переменных. Суть регрессионного анализа. Метод наименьших квадратов.

    лекция, добавлен 15.03.2011

  • Построение линейных оптимизационных моделей. Графические методы поиска оптимального решения линейных моделей. Решение прямой задачи линейного программирования симплексным методом, построение опорных планов транспортных задач, и их оптимизация.

    практическая работа, добавлен 30.06.2013

  • Оценка связи порядковых переменных с помощью непараметрических ранговых коэффициентов Спирмена и Кендалла. Модели метода наименьших квадратов с детерминированной независимой переменной. Оценка дисперсии независимой переменной. Сложение временных рядов.

    статья, добавлен 28.07.2020

  • Параметры уравнения регрессии и корреляционного значения. Анализ точности определения оценок коэффициентов регрессии. Расчет показателя тесноты связи и значимости коэффициента корреляции. Нахождение уравнения линейной регрессии из системы уравнений.

    контрольная работа, добавлен 15.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.