Аппроксимация функций. Метод наименьших квадратов
Построение точечной диаграммы рассеяния. Анализ системы линейных уравнений. Вычисление средней ошибки аппроксимации. Оценка гипотезы о линейной корреляции. Составление квадратической, гиперболической, экспоненциальной моделей, связей между признаками.
Подобные документы
Принципы использования алгоритмов вычисления оценок для решения задач распознавания. Свойства произвольной функции по методу наименьших квадратов для разных видов уравнений множественной регрессии. Косвенный МНК и его значение для линейной функции.
контрольная работа, добавлен 06.02.2014Характеристика зависимостей между среднедневной заработной платой и расходами на покупку продовольственных товаров. Расчет параметров линейной регрессии. Оценка модели через ошибку аппроксимации. Определение индекса корреляции по данным регионов.
контрольная работа, добавлен 17.04.2011Расчет оценки параметров уравнения парной линейной регрессии. Оценка тесноты связи между признаками с помощью выборочного коэффициента корреляции. Построение доверительного интервала для коэффициента регрессии. Осуществление дисперсионного анализа.
контрольная работа, добавлен 16.03.2017Системы эконометрических уравнений. Суть идентификации - единственности соответствия между приведенной и структурной формой модели. Оценка параметров структурной модели. Косвенный и двухшаговый метод наименьших квадратов. Модель протекционизма Сальвадора.
курсовая работа, добавлен 25.09.2011Сущность и цели экономического анализа, взаимосвязи переменных и поведение различных показателей. Модель парной линейной регрессии. Метод наименьших квадратов, система нормальных уравнений. Примеры реализации линейной регрессии в Microsoft Excel.
учебное пособие, добавлен 06.10.2012Построение адаптивной мультипликативной модели Хольта-Уинтерса с учётом сезонного фактора. Оценка точности построенной модели с использованием средней относительной ошибки аппроксимации. Правила анализа стохастических линий и индекса относительной силы.
контрольная работа, добавлен 13.10.2013Основные задачи регрессионного анализа. Использование обобщенного метода наименьших квадратов. Характеристика оценки коэффициентов автокорреляции, дисперсии и ковариации. Особенность тенденции роста рассеяния случайных отклонений и построения матрицы.
презентация, добавлен 18.01.2015Оценка параметров уравнения линейной регрессии по методу наименьших квадратов. Определение выборочного коэффициента корреляции. Частичная как вид мультиколлинеарности, при которой факторные переменные связаны некоторой стохастической зависимостью.
контрольная работа, добавлен 05.02.2016Применение теста ранговой корреляции Спирмэна для оценки гетероскедастичности при 5% уровне значимости. Расчет средней ошибки аппроксимации. Выявление на уровне значимости 0,05 наличия автокорреляции возмущений с использованием критерия Дарбина-Уотсона.
контрольная работа, добавлен 18.02.2018Оценка точности модели с использованием средней относительной ошибки аппроксимации. Расчет прогнозных значений экономического показателя. Зависимость между компонентами тренд – сезонный временный ряд. Расчет процентов с точным числом дней ссуды.
контрольная работа, добавлен 03.12.2013Расчет коэффициента парной корреляции и средней ошибки аппроксимации. Прогноз заработной платы при определенном значении среднедушевого прожиточного минимума и оценка его точности. Построение аддитивной модели временного ряда потребления электроэнергии.
контрольная работа, добавлен 07.11.2014Построение адаптивной мультипликативной модели Хольта-Уинтерса с учётом сезонного фактора. Проверка точности построенной модели. Расчёт и график экспоненциальной скользящей средней, построение стохастических линий и графиков скорости изменения цен.
контрольная работа, добавлен 09.12.2013Построение уравнения линейной и квадратичной регрессии с помощью метода наименьших квадратов. Анализ тесноты связи с помощью показателей корреляции и детерминации. Расчет общего и частного F-критерия Фишера. Сущность информативных лаговых переменных.
контрольная работа, добавлен 07.10.2015Методы расчета параметров выборочного уравнения линейной регрессии с помощью метода наименьших квадратов. Оценка статистической значимости коэффициента корреляции, используя критерий Стьюдента. Анализ тесноты связи с помощью показателя детерминации.
учебное пособие, добавлен 13.01.2016Линейные и нелинейные модели парной регрессии и корреляции. Свойства оценок на основе метода наименьших квадратов. Анализ системы эконометрических уравнений. Характеристика структурной и приведенной форм. Суть автокорреляции уровней временного ряда.
лекция, добавлен 10.06.2014Анализ собственно-корреляционных параметрических методов изучения связи, оценка существенности корреляции. Понятие регрессионного анализа и оценка параметров уравнений регрессии. Вычисление значений линейного и множественного коэффициентов корреляции.
контрольная работа, добавлен 14.10.2009Решение экономических задач и построение полей корреляции гипотезы возможных форм связей. Определение параметров линейного уровня парной регрессии. Изучение влияния факторов на стоимость валового регионального продукта и построение линейных гипотез.
задача, добавлен 12.11.2012Суть метода наименьших квадратов, его применение для оценки эконометрических уравнений. Вычисление вторых производных и проверка определенности матрицы Гессе. Построение доверительных интервалов в модели однофакторной регрессии с нормальными ошибками.
статья, добавлен 04.02.2014Построение уравнения регрессии с помощью метода наименьших квадратов. Матричный подход в регрессионном анализе. Оценка вариации уравнения регрессии и проверка гипотез о наклоне и коэффициенте корреляции. Оценка математического ожидания значений отклика.
учебное пособие, добавлен 22.11.2012Расчет линейных коэффициентов парной корреляции и детерминации. Оценка статистической значимости параметров регрессии и коэффициента корреляции с уровнем значимости 0,05. Прогноз значения признака-результата при прогнозируемом значении признака-фактора.
контрольная работа, добавлен 25.03.2016Вычисление параметров уравнений линейной регрессии. Главная особенность интерпретации рассчитанных характеристик. Основной анализ регулярной модели зависимости выручки предприятия от капиталовложений. Построение матрицы коэффициентов парной корреляции.
контрольная работа, добавлен 20.02.2015Построение однофакторной и двухфакторной моделей регрессии. Анализ влияния фактора на зависимую переменную по моделям с помощью коэффициентов детерминации, множественной корреляции, эластичности и установление степени линейной связи между переменными.
практическая работа, добавлен 16.05.2013Расчет линейного коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации. Оценка статистической значимости уравнения регрессии и отдельных ее параметров и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.
контрольная работа, добавлен 13.04.2022Аппроксимация, интерполяция и экстраполяция как наиболее распространенные методы поиска функциональных зависимостей. Методы и подходы к интерполяции данных. Метод наименьших квадратов как математический метод, применяемый для решения различных задач.
контрольная работа, добавлен 30.11.2016Построение линейного уравнения парной регрессии y от x. Причины существования случайной ошибки. Определение среднеквадратического отклонения; коэффициентов корреляции, эластичности, детерминации. Оценка статистической значимости парной линейной регрессии.
контрольная работа, добавлен 14.04.2021