Аппроксимация функций. Метод наименьших квадратов

Построение точечной диаграммы рассеяния. Анализ системы линейных уравнений. Вычисление средней ошибки аппроксимации. Оценка гипотезы о линейной корреляции. Составление квадратической, гиперболической, экспоненциальной моделей, связей между признаками.

Подобные документы

  • Решение задачи с помощью пакета Excel. Параметры уравнения линейной зависимости. Таблица дисперсионного анализа, коэффициенты детерминации. Средняя ошибка аппроксимации. Оценка значимости коэффициента корреляции и регрессии с помощью критерия Стьюдента.

    контрольная работа, добавлен 11.10.2012

  • Изучение понятий матрицы и матричной алгебры, выявление их роли в экономике. Рассмотрение примеров решения задач на составление системы линейных уравнений. Анализ модели Леонтьева многоотраслевой экономики (балансовый анализ) и линейной модели обмена.

    методичка, добавлен 02.04.2014

  • Разработка оптимального плана производства, дающего наибольшую прибыль. Построение графика временного ряда; построение линейной модели и оценка ее параметров с помощью метода наименьших квадратов. Оценка адекватности и точности построенной модели.

    контрольная работа, добавлен 09.06.2014

  • Расчет и составление матрицы парных коэффициентов корреляции и индекса детерминации. Вычисление дисперсионного отношения Фишера. Построение экономической модели влияния годового фонда заработной платы и мигрантов на численность безработных в регионе.

    контрольная работа, добавлен 10.01.2017

  • Составление уравнения регрессии с применением метода наименьших квадратов. Оценка достоверности полученного уравнения с использованием корреляционного анализа. Расчет среднеквадратичного отклонения, коэффициентов парной детерминации и корреляции.

    задача, добавлен 19.04.2017

  • Оценка статистической надежности уравнения регрессии с помощью F-критерия Фишера, коэффициента детерминации и скорректированного коэффициента детерминации. Расчет коэффициента корреляции для определения тесноты связи между исследуемыми признаками.

    задача, добавлен 25.03.2020

  • Анализ метода проведения парного регрессионного анализа с целью выявления связи между экономическими показателями деятельности коммерческих банков. Определение коэффициента детерминации, оценка значимости уравнения регрессии, расчет ошибки аппроксимации.

    лабораторная работа, добавлен 16.11.2011

  • Экстраполяция по скользящей и экспоненциальной средней. Одно- и многофакторные прогнозирующие функции. Метод экспоненциального сглаживания. Составление прогноза поквартального объема продаж ОАО "Прибой" с использованием метода скользящей средней.

    контрольная работа, добавлен 09.12.2014

  • Расчет коэффициента корреляции между временными рядами с помощью отклонения от основной тенденции. Построение поля корреляции, формулировка гипотезы о форме связи. Оценка с помощью критерия Фишера. Интерпретация коэффициентов регрессии, оценка значимости.

    контрольная работа, добавлен 21.09.2017

  • Построение поля корреляции, формулировка гипотезы о возможной форме и направлении связи. Расчет параметров парной линейной, степенной и линейно-логарифмической функций, а также параболы второго порядка. Построение уравнения регрессии и методы его решения.

    лабораторная работа, добавлен 25.03.2012

  • Оценка качества статистической модели через среднюю ошибку аппроксимации и F-критерий Фишера. Теснота связи для линейного уравнения регрессии. Определение коэффициента множественной корреляции. Построение автокорреляционной функции временного ряда.

    контрольная работа, добавлен 03.06.2014

  • Оценивание функции спроса для расчета оптимальной цены. Определение критерия правильности расчетов. Способы оценивания точности восстановления зависимости. Обработка данных опроса с помощью методов наименьших квадратов и степенной аппроксимации.

    курсовая работа, добавлен 18.09.2015

  • Использование адаптивных методов в экономическом прогнозировании. Расчет экспоненциальной средней для временного ряда курса акций фирмы IBM, где в качестве начального значения экспоненциальной средней взято среднее значение из пяти первых уровней ряда.

    контрольная работа, добавлен 13.08.2010

  • Формирование системы линейных уравнений, специфика и описание численного моделирования. Аппроксимация уравнений, граничных условий и условий на фронтах. Нумерация фронтов и уравнения теплопроводности. Решение задач типа Стафана, алгоритмическая процедура.

    статья, добавлен 06.02.2015

  • Сущность регрессионного анализа. Методы определения вида регрессионных уравнений и их параметров, наименьших квадратов. График изменения видового числа древостоя ели в зависимости от средней высоты. Регрессия длины корней на длину стволиков всходов сосны.

    контрольная работа, добавлен 29.03.2018

  • Исследование сущности обобщенного метода наименьших квадратов, который применяется к преобразованным данным и позволяет получать оценки, обладающие не только свойством несмещенности, но и имеющие меньшие выборочные дисперсии. Типы математических моделей.

    контрольная работа, добавлен 10.05.2011

  • Линейные, нелинейные парные функции регрессии. Оценка тесноты связи дохода от железнодорожных перевозок и пассажирооборота с помощью показателей корреляции, детерминации, среднего коэффициента эластичности. Оценка ошибки аппроксимации уравнений регрессии.

    курсовая работа, добавлен 29.10.2015

  • Построение и анализ линейной множественной регрессии. Исследование степени корреляционной зависимости между переменными. Системы одновременных уравнений и их идентификация. Анализ временных рядов и прогнозирование. Оценка авторегрессионной модели.

    лабораторная работа, добавлен 02.08.2013

  • Определение корреляционной зависимости между величинами. Характеристика значимости нелинейной корреляции для множественного уравнения парной регрессии. Оценка качества модели функции регрессии и её параметров. Изучение методов наименьших квадратов.

    курсовая работа, добавлен 26.04.2013

  • Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.

    курс лекций, добавлен 10.02.2014

  • Уравнения линейной, гиперболической, степенной и показательной парной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка значимости коэффициентов регрессий с помощью критерия Стьюдента и доверительных интервалов.

    контрольная работа, добавлен 24.12.2010

  • Порядок построения адаптивной мультипликативной модели Хольта-Уинтерса с учетом сезонного фактора. Оценка точности построенной модели с использованием средней ошибки аппроксимации. Нормальность распределения остаточной компоненты по R/S-критерию.

    контрольная работа, добавлен 18.07.2016

  • Линейный коэффициент парной корреляции и средняя ошибка аппроксимации. Оценка статистической значимости параметров регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента. Скорректированный коэффициент множественной детерминации.

    контрольная работа, добавлен 16.03.2015

  • Определение коэффициентов линейного уравнения регрессии. Определение числа индивидуальных значений признака. Корреляционная зависимость и уравнение регрессии. Построение системы нормальных уравнений с использованием метода наименьших квадратов.

    реферат, добавлен 24.12.2011

  • Экономическая интерпретация коэффициента регрессии. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Коэффициенты детерминации и средние относительные ошибки аппроксимации. Прогнозирование среднего значения показателя.

    контрольная работа, добавлен 30.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.