Исследование методов прогнозирования стохастических процессов с использованием нейронный сетей
Получение качественного прогноза. Повышение качества и точности прогнозирования, посредством выбора метода прогнозирования и разработки программного продукта, построенного на нейронной сети. Экспериментальная оценка эффективности предлагаемых критериев.
Подобные документы
- 51. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 - 52. Механизмы вычислительного интеллекта при решении задачи автоматизации прогнозирования электроэнергии
Исследование проблемы прогнозирования потребления электроэнергии для множества объектов в автоматическом режиме. Подход к автоматизации процесса прогнозирования основанный на CRISP-DM. Архитектура системы, реализующая механизмы вычислительного интеллекта.
статья, добавлен 30.05.2017 Топологии нейронной сети: биологический нейрон, функции активации, закономерности обучения. Существующие архитектуры и их сравнительная характеристика. Многослойный перцептрон нейронной сети, особенности ее использования для динамических систем.
отчет по практике, добавлен 18.02.2019Результаты применения разработанного программного комплекса "Reliability Calculator" для прогнозирования числа отказов в очередной сборке исследуемого тиражного продукта. Возможности комплекса и постулаты модели надежности, положенной в его основу.
статья, добавлен 27.05.2018Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.
дипломная работа, добавлен 26.05.2018Особенности применения нейронной сети с использованием библиотеки OpenCV для распознавания эмоций. Обучение нейронной сети, распознавание лиц из базы данных Yale Facesс помощью обучающего набора данных в рамках авторского проекта "Сурдотелефон".
статья, добавлен 25.02.2019Разработка новых методов решения проблемы предсказывания (определения) цен акций на фондовом рынке с помощью технологии датамайнинга и машинного обучения, а именно нейронных сетей как инструмента имитации агента, торгующего на фондовом или другом рынке.
дипломная работа, добавлен 26.08.2016Обзор технологии Text Mining. Алгоритмы для многоклассовой классификации текстов для выделения тега. Моделирование нейронной сети с использованием среды программирования Python для анализа данных и построения предсказательных моделей и библиотек.
дипломная работа, добавлен 07.09.2018Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
дипломная работа, добавлен 28.08.2020Характеристика процесса построения простейшей нейронной сети в пакете neuralnet. Анализ алгоритма подготовки данных на примере набора данных iris. Описание процесса обучения нейронной сети. Оценка качества классификации данных полученной нейронной сетью.
статья, добавлен 28.10.2020Разработка методики прогнозирования потребительских свойств растений подсолнечника на основе анализа их фенотипических признаков. Рассмотрение примеров карточек прогнозирования (экранных форм). Анализ сети фенотипических признаков: "высота растения".
статья, добавлен 26.04.2017Произведение прогнозирования прибыли на базе экономико-математического моделирования. Рассмотрение реализации механизмов анализа прибыли и ее прогнозирования на базе "1С: Предприятие 8.2". Обоснование параметров финансовой устойчивости предприятия.
дипломная работа, добавлен 20.03.2017Определение сущности фьючерсного контракта. Рассмотрение сравнительного анализа модели искусственной нейронной сети и регрессионных моделей. Ознакомление с процессом выбора программного обеспечения. Исследование временных рядов биржевых индексов.
дипломная работа, добавлен 30.08.2016Сверточная нейронная сеть как тип искусственной нейронной сети с прямой связью. Знакомство с историей и концепцией развития сверточных нейронных сетей. Характеристика результатов программного эксперимента в виде графиков и сгенерированных изображений.
статья, добавлен 30.06.2020Методика статистического моделирования данных для обучения нейронных сетей с целью прогнозирования прочностных свойств волокнисто-пористых биокомпозитов. Количество данных, необходимое для обучения и тестирования сети. Эмпирическая линейная регрессия.
статья, добавлен 27.04.2017Изучение структуры компьютерных сетей и используемых аппаратно-программных средств. Характеристика контроля технического состояния узлов и блоков сети. Анализ обеспечения процесса прогнозирования по техническому состоянию частей компьютерной сети.
курсовая работа, добавлен 03.04.2013Графическая модели информационных процессов. Оценка целесообразности разработки алгоритма и программного продукта и определение трудоемкости. Определение и оценка показателей экономической эффективности разработанного алгоритма и программного продукта.
курсовая работа, добавлен 18.01.2016Использование нейронные сети для прогнозирования концентрации отдельных веществ и для установления экологической обстановки региона как по отдельным выбросам, так и по их совокупности. Современные методы обработки разнотипных экспериментальных данных.
статья, добавлен 25.08.2020Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Автоматизация сбора, анализа и обработки данных в супермаркете. Разработка программы для распознавания лиц в живой очереди или изображений в реальном времени. Архитектура нейронной сети. Общий вид и назначение персептрона, оценка точности его работы.
статья, добавлен 25.02.2019Рассматриваются алгоритмы обучения нейронной сети: градиентный спуск с постоянным шагом и метод сопряженных градиентов (алгоритм Флетчера-Ривса). Расчет значения минимизируемой целевой функции ошибки полученной на тестовой выборке после обучения.
статья, добавлен 29.04.2018Использование нейросетевого моделирования для исследования зависимости климатических параметров планеты Земля от орбитальных параметров, приходящей солнечной радиации. Интервальные нейронные сети, реализация алгоритмов прогнозирования временных рядов.
дипломная работа, добавлен 06.07.2016Особенности фондовой биржи, методы прогнозирования цен. Определение термина "торговая система". Сентиментный анализ сообщений Twitter. Создание словаря классификаций эмоций. Обучение искусственных нейронных сетей, алгоритм однослойного персептрона.
курсовая работа, добавлен 28.12.2015Разработка методики для автоматической сегментации спутниковых снимков по нескольким классам (здания, реки, дороги) на базе сверточных нейронных сетей. Особенности подготовки изображения для тренировки нейронной сети. Оценка эффективности нейронных сетей.
статья, добавлен 11.01.2018Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016